Advertisement

PtCoCr catalysts for fuel cell cathodes: Electrochemical activity, Pt content, substrate nature, structure and corrosion properties

  • M. R. Tarasevich
  • V. A. Bogdanovskaya
  • Yu. G. Gavrilov
  • G. V. Zhutaeva
  • L. P. Kazanskii
  • E. M. Kol’tsova
  • A. V. Kuzov
  • O. V. Lozovaya
  • A. D. Modestov
  • M. V. Radina
  • V. Ya. Filimonov
Modern Problems of the Physical Chemistry of Surfaces, Materials Science, and Materials Protection

Abstract

Creation of multicomponent catalytic systems is the main way to decrease the content of or completely replace Pt in fuel cell cathodes. Compared to the conventional catalytic systems, production of PtCoCr catalysts on different substrates (XC-72 carbon nanotubes, TiO2) differs in high-temperature conditions and the use of nitrogen-containing transient-metal precursors. According to electrochemical and structural studies, during synthesis and subsequent treatment, alloy nanoparticles with a core-shell structure enriched in platinum are formed on a carbon material doped with nitrogen. The ligand effect of the alloy core results in an increase in the electron density of the platinum d-level, acceleration of oxygen reduction, and deceleration of water molecule discharge and platinum corrosion. A architecture of membrane electrode assembly involving PtCoCr-based active layers of varying composition is developed for fuel cells operating at a temperature of 65°C in hydrogen-air and hydrogen-oxygen environments. In both cases, the use of PtCoCr instead of monoplatinum catalysts enabled us to halve the platinum consumption at the same discharge current density and specific power. The results of life testing and potential cycling of membrane electrode assemblies under severe conditions showed that the resistance of PtCoCr systems is not inferior to platinum.

Keywords

Fuel Cell Oxygen Reduction Membrane Electrode Assembly Potential Cycling Fuel Cell Cathode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tarasevich, M.R., Zhutaeva, G.V., Bogdanovskaya, V.A., et al., Korroziya: Mater., Zashch., 2010, no. 8, p. 33.Google Scholar
  2. 2.
    Tarasevich, M.R., Bogdanovskaya, V.A., Kazanskii, L.P., et al., Korroziya: Mater., Zashch., 2011, vol. 6, p. 39.Google Scholar
  3. 3.
    Bonnemann, H., Brijoux, W., Brinkmann, R., et al., Angew. Chem. Int. Engl., 1991, vol. 30, p. 1312.CrossRefGoogle Scholar
  4. 4.
    Bogdanovskaya, V.A. and Tarasevich, M.R., Elektrokhimiya, 2011, vol. 47, p. 380.Google Scholar
  5. 5.
    Antolini, E., Saldago, J.R.C., and Gonzalez, E.R., J. Power Sources, 2006, vol. 160, p. 957.CrossRefGoogle Scholar
  6. 6.
    Mani, P., Srivastava, R., and Strasser, P., J. Phys. Chem. C, 2008, vol. 112, p. 2770.CrossRefGoogle Scholar
  7. 7.
    Yang, R., Stevens, K., and Dahn, J.R., J. Electrochem. Soc., 2008, vol. 155, no. 1, p. B79.CrossRefGoogle Scholar
  8. 8.
    Kocha, S.S., in Handbook of Fuel Cells—Fundamental and Applications, Vielstich, W., Lamm, A., and Gasteiger, H., Eds., New York: Wiley, 2003, vol. 3, ch. 43, p. 538.Google Scholar
  9. 9.
    Koh, S. and Strasser, P., J. Am. Chem. Soc., 2007, vol. 129, p. 12624.CrossRefGoogle Scholar
  10. 10.
    Koh, S., Hahn, N., Yu, C.F., and Strasser, P., J. Electrochem. Soc., 2008, vol. 155, p. B1281.CrossRefGoogle Scholar
  11. 11.
    Neyerlin, K.C., Srivastava, R., Yu, C.F., and Strasser, P., J. Power Sources, 2009, vol. 186, p. 261.CrossRefGoogle Scholar
  12. 12.
    Mani, P., Srivastava, R., and Strasser, P., J. Phys. Chem. C, 2008, vol. 112, p. 2770.CrossRefGoogle Scholar
  13. 13.
    Schlapka, A., Lischka, M., Gross, A., et al., Phys. Rev. Lett., 2003, vol. 91, p. 016101.CrossRefGoogle Scholar
  14. 14.
    Hammer, B. and Norskov, J.K., Adv. Catalysis, 2000, vol. 45, p. 71.CrossRefGoogle Scholar
  15. 15.
    Shukla, A.K., Neergat, M., Bera, P., et al., J. Electroanal. Chem., 2001, vol. 504, p. 111.CrossRefGoogle Scholar
  16. 16.
    Bogdanovskaya, V.A., Tarasevich, M.R., Kuznetsova, L.N., and Radina, M.V., Zh. Fiz. Khimii, 2009, vol. 83, p. 2244.Google Scholar
  17. 17.
    Tsivadze, A.Yu., Tarasevich, M.R., and Bogdanovskaya, V.A., Teor. Eksp. Khimiya, 2010, vol. 46., p. 378.Google Scholar
  18. 18.
    Bogdanovskaya. V.A., Beketaeva, L.A., Rybalka, K.V., et al., Elektrokhimiya, 2008, vol. 44, p. 316.Google Scholar
  19. 19.
    Tarasevich, M.R., Radyushkina, K.A., and Bogdanovskaya, V.A., Elektrokhimiya porfirinov (Electrochemistry of Porphyrins), Moscow: Nauka, 1991.Google Scholar
  20. 20.
    Montoya, A., Gil, J.O., Mondragon, F., and Truong, T.N., Fuel Chem. Divis. Preprints, 2002., vol. 47, p. 424.Google Scholar
  21. 21.
    Li, X., Park, S., and Popov, B.N., J. Power Sources, 2010, vol. 195, p. 445.CrossRefGoogle Scholar
  22. 22.
    Rossmeisl, J. and Norskov, J.K., Surf. Sci., 2008, vol. 602, p. 23372.CrossRefGoogle Scholar
  23. 23.
    Bagotskii, V.S., Tarasevich, M.R., Radyushkina, K.A., et al., Dokl. Akad. Nauk SSSR, 1977, vol. 239, p. 889.Google Scholar
  24. 24.
    Tarasevich, M.R. and Bogdanovskaya, V.A., in Sovremennye problemy fizicheskoi khimii (Modern Problems of Physical Chemistry), Moscow: Granitsa, 2005, p.378.Google Scholar
  25. 25.
    Bogdanovskaya, V.A., Tarasevich, M.R., and Lozovaya, O.V., Elektrokhimiya, 2011, vol. 47, p. 902.Google Scholar
  26. 26.
    Lozovaya, O.V., Bogdanovskaya, V.A., Kazanskii, L.P., and Tarasevich, M.R., Alternat. Energetika Ekologiya, 2012, no. 2, p. 78.Google Scholar
  27. 27.
    Chen, S., Gasteiger, H.A., Hayakawa, K., et al., J. Electrochem. Soc., 2010, vol. 157, p. A82.CrossRefGoogle Scholar
  28. 28.
    Gasteiger, H.A., Kocha, S., Sompalli, B., and Wagner, F., Appl. Catalysis B: Environ., 2005, vol. 56, p. 9.CrossRefGoogle Scholar
  29. 29.
    Tarasevich, M.R. and Bogdanovskaya, V.A., Alternat. Energetika Ekologiya, 2009., vol. 12, p. 24.Google Scholar
  30. 30.
    Paffett, M.T., Berry, J.G., and Gottesfeld, S., J. Electrochem. Soc., 1988, vol. 135, p. 1431.CrossRefGoogle Scholar
  31. 31.
    Stamenkovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., J. Electroanal. Chem., 2003., vols. 554–555, p. 191.Google Scholar
  32. 32.
    Salgado, J.R.C., Antolini, E., and Gonzalez, E.R., J. Phys. Chem. B, 2004, vol. 108, p. 17767.CrossRefGoogle Scholar
  33. 33.
    Paffett, M.T., Berry, J.G., and Gottesfeld, S., J. Electrochem. Soc., 1988, vol. 135, p. 1431.CrossRefGoogle Scholar
  34. 34.
    Mukerjee, S., Srinivasan, S., Soriaga, M.P., and McBreen, J., J. Electrochem. Soc., 1995., vol. 142, p. 1409.CrossRefGoogle Scholar
  35. 35.
    Tarasevich, M.R., Sadkovski, A., and Yeager, E., in Comprehensive Treatise of Electrochemistry, vol. 7: Kinetics and Mechanism of Electrode Processes, Conway, B.E., Bockris, J.O.M., Yeager, E., et al., Eds., New York: Plenum, 1983, p. 301.Google Scholar
  36. 36.
    Sepa, D.B., Vojnovic, M.V., and Damjanovic, A., Electrochim. Acta, 1981, vol. 26, p. 781.CrossRefGoogle Scholar
  37. 37.
    Sasaki, K., Shao, M., and Adzic, R., in Polymer Electrolyte Fuel Cell Durability, Buchi, F.N., Inaba, M., and Schmidt, T.J., Eds., New York: Springer, 2009, p. 7.Google Scholar
  38. 38.
    Merzougui, B. and Swathirajan, S., J. Electrochem. Soc., 2006, vol. 153, p. A2220.CrossRefGoogle Scholar
  39. 39.
    Paulus, U.A., Schmidt, T.J., Gasteiger, H.A., and Behm, R.J., J. Electroanal. Chem., 2001, vol. 495., p. 134.CrossRefGoogle Scholar
  40. 40.
    Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsov (Rotating Disc Electrode with a Ring), Moscow: Nauka, 1987.Google Scholar
  41. 41.
    Johnson, D.C., Napp, D.T., and Burchenstein, S., Electrochim. Acta, 1970, vol. 15, p. 1493.CrossRefGoogle Scholar
  42. 42.
    Darling, R.M. and Meyers, J.P., J. Electrochem. Soc., 2003, vol. 150, p. A1523.CrossRefGoogle Scholar
  43. 43.
    Emets, V.V., Tarasevich, M.R., and Busev, S.A., Alternat. Energetika Ekologiya, 2009, no. 8, p. 165.Google Scholar
  44. 44.
    Multi-Year Research, Development and Demonstration Plan, Technical Plan — Fuel Cells, Department of Energy, 2007.Google Scholar
  45. 45.
    Miller, M. and Bazylak, A., J. Power Sources, 2011, vol. 196, p. 601.CrossRefGoogle Scholar
  46. 46.
    Yu, Y., Tu, Zh., Zhang, H., et al., J. Power Sources, 2011, vol. 196, p. 5077.CrossRefGoogle Scholar
  47. 47.
    Chen, S., Gasteiger, H.A., Hayakawa, K., et al., J. Electrochem. Soc., 2010, vol. 157, p. A82.CrossRefGoogle Scholar
  48. 48.
    Gottesfeld, S., ECS Trans., 2008, vol. 6, p. 51.CrossRefGoogle Scholar
  49. 49.
    Tarasevich, M.R., Alternat. Energetika Ekologiya, 2012, no. 1, p. 56.Google Scholar
  50. 50.
    Tarasevich, M.R. and Korchagin, O.V., Elektrokhimiya, 2012, vol. 48, in press.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. R. Tarasevich
    • 1
  • V. A. Bogdanovskaya
    • 1
  • Yu. G. Gavrilov
    • 2
  • G. V. Zhutaeva
    • 1
  • L. P. Kazanskii
    • 1
  • E. M. Kol’tsova
    • 2
  • A. V. Kuzov
    • 1
  • O. V. Lozovaya
    • 1
  • A. D. Modestov
    • 1
  • M. V. Radina
    • 1
  • V. Ya. Filimonov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations