Synthesis and sensor propeties of crown-containing derivatives of 4-(1,5-diphenyl-Δ2-pyrazolin-3-yl)-1,8-naphthalimide

  • A. N. Sergeeva
  • P. A. Panchenko
  • Yu. V. Fedorov
  • O. A. Fedorova
Molecular and Supramolecular Structures at the Interfaces


Previously undescribed derivatives of 4-(1,5-diphenyl-Δ2-pyrazoline-3-yl)-1.8-naphthalimide that contain a moiety of benzo-15-crown-5- and N-phenylaza-15-crown-5-ether in the composition of the N-aryl substituent at the imide nitrogen atom of the naphthalimide nucleus have been synthesized. The derived compounds have a long-wavelength band in the absorption spectra in the region of 480 nm owing to charge transfer from the electron-donor pyrazoline moiety onto the carbonyl groups of the carboxyimide group. The fluorescence peaks are located in the region of 670 nm. In the series of the synthesized pyrazolinylnaphthalimides, the effect of the nature of the N-aryl moiety on the spectral-luminescent properties has been analyzed. It has been shown that the annelation of the 15-crown-5-ether moiety with the benzene ring of the N-phenyl substituent of 4-pyrazolinyl-N-phenyl naphthalimide does not change the position of bands in the absorption and fluorescence spectra and has little effect on the fluorescence quantum yield. At the same time, the presence of the N-phenylaza-15-crown-5-ether group in the composition of the N-aryl moiety leads to a small hypsochromic shift of the peaks in the absorption and emission spectra and to a decrease in fluorescence intensity attributed to the occurrence of a nonradiative process of electron transfer from the N-aryl substituent onto the photoexcited naphthalimide chromophore. The proposed explanation for the observed spectral effects has been confirmed by the data of semi-empirical quantum-chemical calculations using the PM6 method. The complexation of crown-containing 4-pyrazolinylnaphthalimides was studied employing alkaline earth metal cations (Mg2+ and Ca2+) in acetonitrile solutions. 1H NMR spectroscopy has revealed that the coordination of the cation occurs through the crown-ether receptor. Upon complexation, in the absorption and fluorescence spectra, a bathochromic shift of the peaks of the long-wavelength bands by 6–15 nm was observed. The binding of the Mg2+ cations by the benzo-15-crown-5-ether derivative of naphthalimide was accompanied by fluorescence quenching, while in the case of 4-pyrazolinylnaphthalimide containing an N-phenylaza-crown-ether moiety in the N-aryl substituent, during the complexation with the Ca2+ cations, fluorescence buildup was observed. The spectrofluorometric titration data were used to determine the stability constants of complexes of crown-containing naphthalimides with alkaline earth metal cations with a composition of 1: 1 in acetonitrile. These studies have shown that the synthesized compounds are promising from the standpoint of developing fluorescent sensors for cation analysis.


Naphthalimide Aryl Substituent Spectral Luminescent Property Aryl Moiety Metal Perchlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spektroskopicheskie metody opredeleniya sledov elementov. Per. s angl. (Trace Analysis: Spectroscopic Methods for Elements), Winefordner, J., Ed., Moscow: Mir, 1979.Google Scholar
  2. 2.
    Bissell, R.A., de Silva, A.P., Gunaratne, H.Q.N., et al., Top. Curr. Chem., 1993, vol. 168, p. 223.CrossRefGoogle Scholar
  3. 3.
    Valeur, B., Molecular Fluorescence. Principles and Applications. Weinheim: Wiley-VCH, 2006, p. 387.Google Scholar
  4. 4.
    Krasovitskii, B.M. and Bolotin, B.M., Organicheskie lyuminofory (Organic Luminophors), Moscow: Khimiya, 1984.Google Scholar
  5. 5.
    Grabchev, I. and Konstantinova, T., Dyes Pigm., 1997, vol. 33, p. 197.CrossRefGoogle Scholar
  6. 6.
    Sawa, M., Hsu, T.-L., Itoh, T., et al., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, p. 12371.CrossRefGoogle Scholar
  7. 7.
    Grabchev, I., Moneva, I., Bojinov, V., et al., J. Mater. Chem., 2000, vol. 10, p. 1291.CrossRefGoogle Scholar
  8. 8.
    Martin, E., Weigand, R., and Pardo, A., J. Lumin., 1996, vol. 68, p. 157.CrossRefGoogle Scholar
  9. 9.
    Coya, C., Blanco, R., Juárez, R., et al., Eur. Polym. J., 2010, vol. 46, p. 1778.CrossRefGoogle Scholar
  10. 10.
    May, B., Poteau, X., Yuan, D., et al., Dyes Pigm., 1999, vol. 42, p. 79.CrossRefGoogle Scholar
  11. 11.
    Wang, J., Xiao, Y., Zhang, Z., et al., J. Mater. Chem., 2005, vol. 15, p. 2836.CrossRefGoogle Scholar
  12. 12.
    He, H., Mortellaro, M., Leiner, M., Young, S., et al., Anal. Chem., 2003, vol. 75, p. 549.CrossRefGoogle Scholar
  13. 13.
    Cui, D., Qian, X., Liu, F., et al., Org. Lett., 2004, vol. 6, p. 2757.CrossRefGoogle Scholar
  14. 14.
    Xu, Z., Yoon, J., Spring, D.R., et al., Chem. Commun., 2010, vol. 46, p. 2563.CrossRefGoogle Scholar
  15. 15.
    Duke, R.M., Veale, E.B., Pfeffer, F.M., et al., Chem. Soc. Rev., 2010, vol. 39, p. 3936.CrossRefGoogle Scholar
  16. 16.
    Duan, L., Xu, Y., Qian, X., et al., Tetrahedron Lett., 2008, vol. 49, p. 6624.CrossRefGoogle Scholar
  17. 17.
    Jin, S., Wang, J., Li, M., Wang, B., et al., Chem. Eur. J., 2008, vol. 14, p. 2795.CrossRefGoogle Scholar
  18. 18.
    Lin, H., Chan, Y., Chen, J., Chang, C., et al., J. Mater. Chem., 2011, vol. 21, p. 3170.CrossRefGoogle Scholar
  19. 19.
    Bricks, J., Kovalchuk, A., Trieflinger, C., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 13522.CrossRefGoogle Scholar
  20. 20.
    Rurack, K., Resch-Genger, U., Bricks, J.L., et al., Chem. Commun., 2000, p. 2103.Google Scholar
  21. 21.
    Zhu, W., Yao, R., and Tian, H., Dyes Pigm., 2002, vol. 54, p. 147.CrossRefGoogle Scholar
  22. 22.
    Krasovitskii, B.M. and Afanasiadi, L.M., Preparativnaya khimiya organicheskikh lyuminoforov (Preparative Chemistry of Organic Luminophors), Kharkov: Folio, 1997.Google Scholar
  23. 23.
    Dix, J. and Vögtle, F., Chem. Ber., 1980, vol. 113, p. 457.CrossRefGoogle Scholar
  24. 24.
    Ouchi, M., Inoue, Y., Kanzaki, T., and Hakushi, T., Org. Chem., 1984, vol. 49, p. 1408.CrossRefGoogle Scholar
  25. 25.
    Zhou, Z., Li, F., Yi, T., and Huang, C., Tetrahedron Lett., 2007, vol. 48, p. 6633.CrossRefGoogle Scholar
  26. 26.
    de Silva, A. and Rice, T., Chem. Commun., 1999, p. 163.Google Scholar
  27. 27.
    Gao, Y. and Marcus, R., J. Phys. Chem. A, 2002, vol. 106, p. 1956.CrossRefGoogle Scholar
  28. 28.
    Gan, J., Chen, K., Chang, C.-P., et al., Dyes Pigm., 2003, vol. 57, p. 21.CrossRefGoogle Scholar
  29. 29.
    Ramachandram, B., J. Fluoresc., 2005, vol. 15, p. 71.CrossRefGoogle Scholar
  30. 30.
    Bojinov, V., Panova, I., and Chovelon, J.-M., Sens. Actuators B, 2008, vol. 135, p. 172.CrossRefGoogle Scholar
  31. 31.
    Takahashi, S., Nnozaki, K., Kozaki, M., et al., J. Phys. Chem. A, 2008, vol. 112, p. 2533.CrossRefGoogle Scholar
  32. 32.
    Stewart, J.J.P., J. Mol. Model., 2007, vol. 13, p. 1173.CrossRefGoogle Scholar
  33. 33.
    Fedorova, O.A., Koshkin, A.V., Gromov, S.P., et al., Izv. Akad. Nauk, Ser. Khim., 2002, no. 8, p. 1330.Google Scholar
  34. 34.
    Fedorova, O.A., Strokach, Y.P., Gromov, S.P., et al., New J. Chem., 2002, vol. 26, p. 1137.CrossRefGoogle Scholar
  35. 35.
    Kubin, R.F. and Fletcher, A.N., J. Lumin., 1982, vol. 27, p. 455.CrossRefGoogle Scholar
  36. 36.
    Demas, J.N. and Crosby, G.A., J. Phys. Chem., 1971, vol. 75, p. 991.CrossRefGoogle Scholar
  37. 37.
    Beck, M. and Nagypál, I., Chemistry of Complex Equilibria, New York: John Wiley and Sons, 1990.Google Scholar
  38. 38.
    Agronomov, A.E. and Shabarov, Yu.S., Laboratornye raboty v organicheskom praktikume (Laboratory Works in Organic Practicum), Moscow: Khimiya, 1974.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. N. Sergeeva
    • 1
  • P. A. Panchenko
    • 1
  • Yu. V. Fedorov
    • 1
  • O. A. Fedorova
    • 1
  1. 1.A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations