Linear voltammetry of the redox process involving coadsorption of reagents

  • E. V. Bobrinskaya
  • A. V. Vvedenskii
  • T. G. Krashchenko
Investigation Methods for Physicochemical Systems


Under conditions of nondissociative coadsorption of reagents involved in the superficial redox reaction, the main criterial relations of the linear voltammetry method are found to be independent of the isotherm kind and the number of molecules of water or other surface-active, but electrochemically indifferent, particles that are displaced from the electrode surface by adsorbate particles. The concentration dependence of the parameters of the adsorption peak on the anodic voltammetric curve is discussed in detail, as is the relation between the parameters and both the isotherm kind and the change in the number of adsorption sites during the redox reaction.


Quasi Equilibrium Langmuir Adsorption Model Surface Redox Reaction Blank Electrolyte Linear Voltammetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vvedenskii, A.V., Kartashova, T.V., and Bobrinskaya, E.V., Russ. J. Electrochem., 2008, vol. 44, p. 1473.Google Scholar
  2. 2.
    Gileadi, E. and Conway, B.E., in Modern Aspects of Electrochemistry, Bockris, J.O’M. and Conway, B.E., Eds., London: Butterworths, 1964.Google Scholar
  3. 3.
    Barnartt, S., J. Electrochem. Soc., 1952, vol. 99, p. 549.CrossRefGoogle Scholar
  4. 4.
    Srinivasan, S. and Gileadi, E., Electrochim. Acta, 1966, vol. 11, p. 321.CrossRefGoogle Scholar
  5. 5.
    Wopschall, R. and Shain, I., J. Anal. Chem., 1967, vol. 39, p. 1541.Google Scholar
  6. 6.
    Mairanovskii, S.G., Kineticheskie i kataliticheskie volny v polyarografii (Kinetic and Catalytic Waves in Polarography), Moscow: nauka, 1966.Google Scholar
  7. 7.
    Bockris, J.O’M. and Khan, S.U.M., Surface Electrochemistry: Molecular Level Approach, NewYork: Plenum, 1993.Google Scholar
  8. 8.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.Google Scholar
  9. 9.
    Electroanalytical Methods: Guide to Experiments and Applications, Scholz, F., Ed., Berlin: Springer, 2002.Google Scholar
  10. 10.
    Galus, Z., Fundamentals of Electrochemical Analysis, New York: Ellis Horwood, 1994.Google Scholar
  11. 11.
    Wang, J., Analytical Electrochemistry, New York: Wiley, 2001.Google Scholar
  12. 12.
    Laviron, E., J. Electroanal. Chem., 1974, vol. 52, p. 355.CrossRefGoogle Scholar
  13. 13.
    Laviron, E., J. Electroanal. Chem., 1975, vol. 63, p. 245.CrossRefGoogle Scholar
  14. 14.
    Laviron, E., J. Electroanal. Chem., 1995, vol. 382, p. 111.CrossRefGoogle Scholar
  15. 15.
    Kiperman, S.L., Osnovy khimicheskoi kinetiki v geterogennom katalize (Basic Principles of the Chemical Kinetics in Heterogeneous Catalysis), Moscow: Khimiya, 1979.Google Scholar
  16. 16.
    Roiter, V.A. and Golodets, G.I., Vvedenie v teoriyu kinetiki i katakiza (Introduction to the Theory of Kinetics and Catalysis), Kiev: Naukova Dumka, 1971.Google Scholar
  17. 17.
    Rotinyan, A.L., Tikhonov, N.I., and Shoshina, I.A., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Leningrad: Khimiya, 1981.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. V. Bobrinskaya
    • 1
  • A. V. Vvedenskii
    • 1
  • T. G. Krashchenko
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations