Advertisement

Methanol oxidation on aluminium-copper-silicon alloys coated with polyprrole

Molecular and Supramolecular Structures at the Interfaces
  • 70 Downloads

Abstract

Methanol oxidation on the aluminum-copper-silicon alloys which are coated with polyprrole were investigated in 1 N H2SO4 by using electrochemical method. For this purpose, first the current densitypotential curve of alloys were obtained in 1 N H2SO4 + x M pyrrole solutions, determined passive zones are coated with polyprrole alloys in H2SO4 solutions. Then the current-potential curves were obtained in 1 N H2SO4 + x M methanol with aluminum alloys and these are expected at +1.5 V against to the standard calomel electrode (SCE) at the different times in 1 N H2SO4 + 10−3 M pyrrole that were obtained with different scan rates. The extreme methanol oxidation was seen on the E110 and E140 alloys which are coated with polyprrole. Embedded pH electrode solutions which were coated with polypyrrole in 1 N H2SO4 and 1 N H2SO4 + 0.5 M methanol solutions were measured after 30 minutes at +2.1 V.

Keywords

Pyrrole Oxygen Reduc Tion Reaction Polypyrrole Methanol Oxidation Potential Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Habibi, B., Pournaghi-Azar, M.H., Abdolmohammad-Zadeh, H., and Razmi, H., International Journal of Hydrogen Energy, 2009, vol. 34, p. 2880.CrossRefGoogle Scholar
  2. 2.
    Fuel Cell Handbook, EG and G Services, Inc. and Science Applications International Corporation, Morgantown, WV: US Department of Energy, 2000, 5th ed.Google Scholar
  3. 3.
    Iwasita, T., Electrochim. Acta, 2002, vol. 47, p. 3663.CrossRefGoogle Scholar
  4. 4.
    Shimazu, K., Uosaki, K., Kita, H., and Nodasaka, Y., J. Electroanal. Chem., 1988, vol. 256, p. 481.CrossRefGoogle Scholar
  5. 5.
    Watanabe, M., Saegusa, S., and Stonehart, P., J. Electroanal. Chem., 1989, vol. 271, p. 213.CrossRefGoogle Scholar
  6. 6.
    Shimazu, K., Inada, R., and Kita, H., J. Electroanal. Chem., 1990, vol. 284, p. 523.CrossRefGoogle Scholar
  7. 7.
    Watanabe, M. and Motoo, S., J. Electroanal. Chem., 1975, vol. 60, p. 259.CrossRefGoogle Scholar
  8. 8.
    Götz, M. and Wendt, H., Electrochim. Acta, 1998, vol. 43, p. 3637.CrossRefGoogle Scholar
  9. 9.
    Morimoto, Y. and Yeager, E.B., J. Electroanal. Chem., 1998, vol. 444, p. 95.CrossRefGoogle Scholar
  10. 10.
    Kabbabi, A., Gloaguen, F., Andolfatto, F., and Durand, R., J. Electroanal. Chem., 1994, vol. 373, p. 251.CrossRefGoogle Scholar
  11. 11.
    Coker, E.N., Steen, W.A., Miller, J.T., et al., J. Mater. Chem., 2007, vol. 17, p. 3330.CrossRefGoogle Scholar
  12. 12.
    Akundy, G.S. and Iroh J.O., Polymer, 2001, vol. 42, p. 9665.CrossRefGoogle Scholar
  13. 13.
    Antolini, E. and Gonzalez, E.R., Appl. Catalysis A: General, 2009, vol. 365, p. 1.CrossRefGoogle Scholar
  14. 14.
    Holdcroft, S. and Funt, B.L., J. Electroanal. Chem., 1988, vol. 240, p. 89.CrossRefGoogle Scholar
  15. 15.
    Qi, Z., Lefebvre, M.C., and Pickup, P.G., J. Electroanal. Chem., 1998, vol. 459, p. 9.CrossRefGoogle Scholar
  16. 16.
    Li, J. and Lin, X., J. Electrochem. Soc., 2007, vol. 154, p. B1074.CrossRefGoogle Scholar
  17. 17.
    Becerik, I., Suzer, S., and Kadirgan, F., J. Electroanal. Chem., 2001, vol. 502, p. 118.CrossRefGoogle Scholar
  18. 18.
    Pournaghi-Azar, M.H. and Habibi, B., J. Electroanal. Chem., 2007, vol. 601, p. 5362.Google Scholar
  19. 19.
    Habibi, B. and Pournaghi-Azar, M.H., International of Journal of Hydrogen Energy, 2010, vol. 35, p. 1.CrossRefGoogle Scholar
  20. 20.
    Özyılmaz, A.T., Kardaş, G., Erbil, M., and Yazıcı, B., Appl. Surf. Sci., 2005, vol. 242, p. 97.CrossRefGoogle Scholar
  21. 21.
    Rahman, S.U. and Ba-Shammakh, M.S., Synthetic Metals, 2004, vol. 140, p. 207.CrossRefGoogle Scholar
  22. 22.
    Can, M., Özaslan, H., Işildak, Ö, et al., Polymer, 2004, vol. 45, p. 7011.CrossRefGoogle Scholar
  23. 23.
    Buyuksagis, A., Protection of Metals and Physical Chemistry of Surfaces, 2010, vol. 46, no. 2, p. 134.CrossRefGoogle Scholar
  24. 24.
    Iwasita, T., Advances in Electrochemical Science and Engineering, Gerischer, H. and Tobias, C., Eds., Wiley: Verlag Chemie, 1990, vol. 1, p. 127.Google Scholar
  25. 25.
    Wasmus, S. and Kuver, A., J. Electroanal. Chem., 1999, vol. 461, p. 14.CrossRefGoogle Scholar
  26. 26.
    Hamnett, A., Interfacial Electrochemistry. Theory, Experimental and Applications, Wieckowski, A., Ed., N.Y.: Marcel Dekker, 1999, p. 843.Google Scholar
  27. 27.
    Kabbabi, A., Faure, R., Durand, R., et al., J. Electroanal. Chem., 1998, vol. 444, p. 5328.Google Scholar
  28. 28.
    Scott, K. and Argyropoulos, P., J. Power Sources, 2004, vol. 137, p. 228.CrossRefGoogle Scholar
  29. 29.
    Vidakovic, T., Christov, M., and Sundmacher, K., Electrochim. Acta, 2004, vol. 49, p. 2179.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Afyon Kocatepe University Faculty of Science and ArtAfyonkarahisarTurkey
  2. 2.Ankara University Faculty of Science Chemistry DepartmentAnkaraTurkey

Personalised recommendations