Skip to main content
Log in

Modeling of hydrocarbon film deposition suppression in tokamak diagnostic ports

  • Investigation Methods for Physicochemical Systems
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Because of the requirement of eliminating carbon deposition on mirrors that facilitate optical methods of plasma diagnostics in thermonuclear synthesis devices, the experimental study has been carried out of gasodynamic conditions and the relationship between the partial flows of hydrogen and methane, which are supplied to the direct current glow discharge. The formation of hydrocarbon deposits would be completely suppressed under these conditions. The processes of methane conversion in the discharge into heavier volatile hydrocarbons have been analyzed by mass spectroscopy and conversion into polymer-like a-C:H films have been analyzing by weighing and electron probe microanalysis. The degree of methane conversion was continuously decreasing upon the dilution of methane with hydrogen. The deposition was suppressed completely when methane concentration in the laminar flow of the mixture was approximately 1 mol %. The process of deposition of a-C:H films changed into the process of film erosion when methane content in the mixture was below 0.5 mol %, the Knudsen number Kn ≈ 0.1, and the Reynolds number Re ≈ 2. In order to provide the removal of plasmolysis products from the surface of the mirror located in a special diagnostic port of ITER, the specified gasodynamic conditions created by the carrier gas (hydrogen or deuterium) should be ensured, with the component of the velocity vector being directed at an angle to the surface under protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhin, E., Vukolov, K., Semenov, V., et al., Abstracts of Papers, 22nd IAEA Fusion Energy Conference, Geneva, 2008.

  2. Litnovsky, A., Voitsenya, V., Sugie, T., et al., Abstracts of Papers, 22nd IAEA Fusion Energy Conference, Geneva, 2008.

  3. Velikhov, E.P. and Smirnov, V.P., VANT, Ser. Termoyadernyi sintez, 2006, no. 4, p. 3.

  4. Shimada, M., Costley, A.E., Federici, G., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 808.

    Article  Google Scholar 

  5. Roth, J., Kirschner, A., Bohmaeyer, W., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 970.

    Article  Google Scholar 

  6. Von Keudell, A., Thin Solid Films, 2002, vol. 402, p. 1.

    Article  Google Scholar 

  7. Jacob, W., J. Nucl. Mater., 2005, vols. 337–339, p. 839.

    Article  Google Scholar 

  8. Gorodetskii, A.E., Zalavutdinov, R.Kh., Arkhipov, I.I., Zakharov, A.P., Vnukov, S.P., Bukhovets, V.L., and Varshavskaya, I.G., VANT, Ser. Termoyadernyi sintez, 2002, nos. 1–2, p. 104.

  9. Day, Chr., Hauer, V., Luo, X., et al., Abstracts of Papers, 22nd IAEA Fusion Energy Conference, Geneva, 2008.

  10. Fantz, U., Reiter, D., Heger, B., and Coster, D., J. Nucl. Mater., 2001, vols. 290–293, p. 367.

    Article  Google Scholar 

  11. Lebedev, Yu.A. and Epshtein, I.L., Teplofiz. Vys. Temp., 1998, vol. 36, no. 4, p. 534 [High Temp. (Engl. Transl.), vol. 36, no. 4, pp. 510–516].

    Google Scholar 

  12. Bera, K., Farouk, B., and Lee, Y.H., Plasma Sources Sci. Technol., 2001, vol. 10, p. 211.

    Article  CAS  Google Scholar 

  13. Moller, W., Appl. Phys., 1993, vol. A56, p. 527.

    Google Scholar 

  14. Chapman, S. and Kauling, T., The Mathematical Theory of Nonuniform Gases, Cambridge: Univ. Press, 1952.

    Google Scholar 

  15. Frank-Kamenetskii, D.A., in Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967.

    Google Scholar 

  16. Alman, D.A., Ruzic, D.N., and Brooks, J.N., Phys. Plasmas, 2000, vol. 7, p. 1421.

    Article  CAS  Google Scholar 

  17. Brown, S., Elementarnye protsessy v plazme gazovogo razryada (Elementary Processes in a Gas Discharge Plasma), Moscow: Gosatomizdat, 1961.

    Google Scholar 

  18. Bukhovets, V.L. and Varshavskaya, I.G., Fizikokhim. Poverkhn. Zashch. Mater., 2009, vol. 45, no. 6, p. 563 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), (2009) vol. 45, no. 6, pp. 645–651].

    Google Scholar 

  19. Borovikova, I.N., Galiaskarov, E.G., Rybkin, V.V., and Bessarab, A.B., Teplofiz. Vys. Temp., 1998, vol. 36, no. 5, p. 706 [High Temp. (Engl. Transl.), vol. 36, no. 5, pp. 681–686].

    Google Scholar 

  20. Kukushkin À.S., Pacher H.D., Coster D.P., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 50.

    Article  Google Scholar 

  21. Federici, G., Skinner, C.H., Brooks, J.N., et al., Nuclear Fusion, 2001, vol. 41, p. 1967.

    Article  Google Scholar 

  22. Matthews, G.F., J. Nucl. Mater., 2005, vols. 337–339, p.1.

    Article  Google Scholar 

  23. Federici, G., Mayer, M., Strohmayer, G., Chuyanov, V., and Day, C., J. Nucl. Mater., 2005, vols. 337–339, p. 40.

    Article  Google Scholar 

  24. Gorodetsky, A.E., Zalavutdinov, R.Kh., Zakharov, A.P., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 892.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Gorodetskii, V.L. Bukhovets, R.Kh. Zalavutdinov, A.P. Zakharov, E.E. Mukhin, A.G. Razdobarin, V.V. Semenov, S.Yu. Tolstyakov, 2011, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2011, Vol. 47, No. 4, pp. 434–444.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorodetskii, A.E., Bukhovets, V.L., Zalavutdinov, R.K. et al. Modeling of hydrocarbon film deposition suppression in tokamak diagnostic ports. Prot Met Phys Chem Surf 47, 540–550 (2011). https://doi.org/10.1134/S2070205111040186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205111040186

Keywords

Navigation