Modeling of hydrocarbon film deposition suppression in tokamak diagnostic ports

  • A. E. Gorodetskii
  • V. L. Bukhovets
  • R. Kh. Zalavutdinov
  • A. P. Zakharov
  • E. E. Mukhin
  • A. G. Razdobarin
  • V. V. Semenov
  • S. Yu. Tolstyakov
Investigation Methods for Physicochemical Systems


Because of the requirement of eliminating carbon deposition on mirrors that facilitate optical methods of plasma diagnostics in thermonuclear synthesis devices, the experimental study has been carried out of gasodynamic conditions and the relationship between the partial flows of hydrogen and methane, which are supplied to the direct current glow discharge. The formation of hydrocarbon deposits would be completely suppressed under these conditions. The processes of methane conversion in the discharge into heavier volatile hydrocarbons have been analyzed by mass spectroscopy and conversion into polymer-like a-C:H films have been analyzing by weighing and electron probe microanalysis. The degree of methane conversion was continuously decreasing upon the dilution of methane with hydrogen. The deposition was suppressed completely when methane concentration in the laminar flow of the mixture was approximately 1 mol %. The process of deposition of a-C:H films changed into the process of film erosion when methane content in the mixture was below 0.5 mol %, the Knudsen number Kn ≈ 0.1, and the Reynolds number Re ≈ 2. In order to provide the removal of plasmolysis products from the surface of the mirror located in a special diagnostic port of ITER, the specified gasodynamic conditions created by the carrier gas (hydrogen or deuterium) should be ensured, with the component of the velocity vector being directed at an angle to the surface under protection.


Methane Conversion Hollow Cathode Hydrogen Flow Mirror Surface Methane Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mukhin, E., Vukolov, K., Semenov, V., et al., Abstracts of Papers, 22nd IAEA Fusion Energy Conference, Geneva, 2008.Google Scholar
  2. 2.
    Litnovsky, A., Voitsenya, V., Sugie, T., et al., Abstracts of Papers, 22nd IAEA Fusion Energy Conference, Geneva, 2008.Google Scholar
  3. 3.
    Velikhov, E.P. and Smirnov, V.P., VANT, Ser. Termoyadernyi sintez, 2006, no. 4, p. 3.Google Scholar
  4. 4.
    Shimada, M., Costley, A.E., Federici, G., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 808.CrossRefGoogle Scholar
  5. 5.
    Roth, J., Kirschner, A., Bohmaeyer, W., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 970.CrossRefGoogle Scholar
  6. 6.
    Von Keudell, A., Thin Solid Films, 2002, vol. 402, p. 1.CrossRefGoogle Scholar
  7. 7.
    Jacob, W., J. Nucl. Mater., 2005, vols. 337–339, p. 839.CrossRefGoogle Scholar
  8. 8.
    Gorodetskii, A.E., Zalavutdinov, R.Kh., Arkhipov, I.I., Zakharov, A.P., Vnukov, S.P., Bukhovets, V.L., and Varshavskaya, I.G., VANT, Ser. Termoyadernyi sintez, 2002, nos. 1–2, p. 104.Google Scholar
  9. 9.
    Day, Chr., Hauer, V., Luo, X., et al., Abstracts of Papers, 22nd IAEA Fusion Energy Conference, Geneva, 2008.Google Scholar
  10. 10.
    Fantz, U., Reiter, D., Heger, B., and Coster, D., J. Nucl. Mater., 2001, vols. 290–293, p. 367.CrossRefGoogle Scholar
  11. 11.
    Lebedev, Yu.A. and Epshtein, I.L., Teplofiz. Vys. Temp., 1998, vol. 36, no. 4, p. 534 [High Temp. (Engl. Transl.), vol. 36, no. 4, pp. 510–516].Google Scholar
  12. 12.
    Bera, K., Farouk, B., and Lee, Y.H., Plasma Sources Sci. Technol., 2001, vol. 10, p. 211.CrossRefGoogle Scholar
  13. 13.
    Moller, W., Appl. Phys., 1993, vol. A56, p. 527.Google Scholar
  14. 14.
    Chapman, S. and Kauling, T., The Mathematical Theory of Nonuniform Gases, Cambridge: Univ. Press, 1952.Google Scholar
  15. 15.
    Frank-Kamenetskii, D.A., in Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967.Google Scholar
  16. 16.
    Alman, D.A., Ruzic, D.N., and Brooks, J.N., Phys. Plasmas, 2000, vol. 7, p. 1421.CrossRefGoogle Scholar
  17. 17.
    Brown, S., Elementarnye protsessy v plazme gazovogo razryada (Elementary Processes in a Gas Discharge Plasma), Moscow: Gosatomizdat, 1961.Google Scholar
  18. 18.
    Bukhovets, V.L. and Varshavskaya, I.G., Fizikokhim. Poverkhn. Zashch. Mater., 2009, vol. 45, no. 6, p. 563 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), (2009) vol. 45, no. 6, pp. 645–651].Google Scholar
  19. 19.
    Borovikova, I.N., Galiaskarov, E.G., Rybkin, V.V., and Bessarab, A.B., Teplofiz. Vys. Temp., 1998, vol. 36, no. 5, p. 706 [High Temp. (Engl. Transl.), vol. 36, no. 5, pp. 681–686].Google Scholar
  20. 20.
    Kukushkin À.S., Pacher H.D., Coster D.P., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 50.CrossRefGoogle Scholar
  21. 21.
    Federici, G., Skinner, C.H., Brooks, J.N., et al., Nuclear Fusion, 2001, vol. 41, p. 1967.CrossRefGoogle Scholar
  22. 22.
    Matthews, G.F., J. Nucl. Mater., 2005, vols. 337–339, p.1.CrossRefGoogle Scholar
  23. 23.
    Federici, G., Mayer, M., Strohmayer, G., Chuyanov, V., and Day, C., J. Nucl. Mater., 2005, vols. 337–339, p. 40.CrossRefGoogle Scholar
  24. 24.
    Gorodetsky, A.E., Zalavutdinov, R.Kh., Zakharov, A.P., et al., J. Nucl. Mater., 2005, vols. 337–339, p. 892.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. E. Gorodetskii
    • 1
  • V. L. Bukhovets
    • 1
  • R. Kh. Zalavutdinov
    • 1
  • A. P. Zakharov
    • 1
  • E. E. Mukhin
    • 2
  • A. G. Razdobarin
    • 2
  • V. V. Semenov
    • 2
  • S. Yu. Tolstyakov
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations