Advertisement

Study of surfaces of TiO2-based nanostructured films obtained under action of various templates

  • A. V. Vinogradov
  • A. V. Agafonov
  • V. V. Vinogradov
Molecular and Supermolecular Structures at the Interfaces

Abstract

Using the template sol-gel method and employing polyethyleneimine, polyethylene glycol monooleate, and octylamine as templates, we obtain hybrid materials based on titanium dioxide whose structure contains ordered mesophases of organic substrates. The materials are studied using the thermal, X-ray phase, and X-ray diffraction analyses, as well as small-angle X-ray scattering. Films on a glass surface are obtained from isopropanol solutions containing titanium isopropoxide and organic templates via immersion technique. The surface structure of the films formed before and after annealing was studied by scanning probe microscopy. It is shown that, by using various structure-forming agents, it is possible to control the structure of hybrid materials and films in meso- and macroregions and to obtain titanium dioxide with different composition crystalline modifications during their heat treatment.

Keywords

Rutile Hybrid Material Scanning Probe Microscopy Brookite Polyethyleneimine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, D., Feng, J., Huo, Q., et al., Science, 1998, vol. 279, p. 548.CrossRefADSPubMedGoogle Scholar
  2. 2.
    Yang, P., Zhao, D., Margolese, D.I., et al., Nature, 1998, vol. 396, p. 152.CrossRefADSGoogle Scholar
  3. 3.
    Zhang, Z., Wang, C., Zakaria, R., and Ying, J.Y., J. Phys. Chem., 1998, vol. 102, p. 10871.Google Scholar
  4. 4.
    Frindell, K.L., Bartl, M.H., Popitsch, A., and Stucky, G.D., Angew. Chem., 2002, vol. 41, p. 959.CrossRefGoogle Scholar
  5. 5.
    Grosso, D., Crepaldi, E.L., Cagnol, F., et al., J. Chem. Mater, 2003, vol. 1, p. 4562.CrossRefGoogle Scholar
  6. 6.
    Vinogradov, A.V. and Agafonov, A.V., Mendeleev Commun., 2009, vol. 19, p. 340.CrossRefGoogle Scholar
  7. 7.
    Vinogradov, V.V., Agafonov, A.V., and Vinogradov, A.V., J. Sol-Gel Sci. Technol., 2009. V. 53. p. 312.CrossRefGoogle Scholar
  8. 8.
    Vinogradov, V.V., Agafonov, A.V., and Vinogradov, A.V., Mendeleev Commun., 2009, vol. 19, no. 4, p. 222.CrossRefGoogle Scholar
  9. 9.
    Sberveglieri, G., Depero, L.E., Ferroni, M., et al., Adv. Mater., 1996, vol. 8, p. 334.CrossRefGoogle Scholar
  10. 10.
    Shi, J., Zheng, J., Hu, Y., and Zhao, Yu., Kinet. Katal., 2008, vol. 49, no. 2, p. 293 [Kinet. Catal. (Engl. Transl.), vol. 49, no. 2, p. 279].Google Scholar
  11. 11.
    Djaoued, Y., Badilescu, S., Taj, R., et al., Energy Technol., 2000, vol. 15, p. 657.Google Scholar
  12. 12.
    Vinogradov, À. and Agafonov, A., J. Sol-Gel Sci. Technol., 2009, vol. 49, p. 180.CrossRefGoogle Scholar
  13. 13.
    Kormann, C., Bahnemann, D.W., and Hofmann, M.R., J. Phys. Chem., 1988, vol. 18, p. 5196.CrossRefGoogle Scholar
  14. 14.
    Agafonov, A.V. and Vinogradov, A.V., Khim. Vys. Energ., 2008, vol. 42, no. 4, p. 79.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Vinogradov
    • 1
  • A. V. Agafonov
    • 1
    • 2
  • V. V. Vinogradov
    • 2
  1. 1.Ivanovo State University of Chemical TechnologyIvanovoRussia
  2. 2.Institute of Chemistry of SolutionsRussian Academy of SciencesIvanovoRussia

Personalised recommendations