Thermodynamic model for estimating the composition of passive films and Flade potential on Fe-Cr alloys in aqueous solutions

  • Yu. Ya. Andreev
  • I. A. Safonov
  • A. V. Doub
Physicochemical Processes at the Interfaces


A thermodynamic model of a passive film is developed, in which the formation of the film on the surface of an Fe-Cr alloy in an aqueous solution is considered to be a result of the stable solid-phase chemical and adsorption equilibrium at the alloy-inner passive film layer interface. In the calculations, the Cr2O3 content in the passive film is determined by both the Gibbs energy change (ΔG < 0) in the chemical oxidation of the alloy components by the water oxygen and the change in the surface Gibbs energy (ΔG S > 0) of the alloy. The ΔG S change results in the negative adsorption of chromium atoms, which shifts the 3Fe + Cr2O3 ↔ 3FeO + 2Cr equilibrium toward the FeO formation in the passive film. Calculations showed that the enrichment of the passive film in chromium oxide should sharply increase in a chromium content range of 10–20% in the alloy, which agrees with the known data of X-ray photoelectron spectroscopy of the passive films. A formula is derived for estimating the Flade potential of Fe-Cr alloys, which relates the Flade potentials of individual Fe and Cr components to the FeO and Cr2O3 contents in the passive film.


Passive Film Chromium Oxide Chromium Atom Gibbs Energy Change Total Gibbs Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tomashov, N.D., Theory of Corrosion and Protection of Metals, New York: Macmillan, 1966.Google Scholar
  2. 2.
    Asami, K., Hashimoto, K., and Shimodaira, S., Corros. Sci., 1978, vol. 18, p. 151.CrossRefGoogle Scholar
  3. 3.
    Asami, K. and Hashimoto, K., Langmuir, 1987, vol. 3, no. 6, p. 897.CrossRefGoogle Scholar
  4. 4.
    Asami, K., Hashimoto, K., and Shimodaira, S., Corros. Sci., 1976, vol. 16, p. 387.CrossRefGoogle Scholar
  5. 5.
    Leigraf, K., Hultqwist, G., Olefjord, I., et al., Zashch. Met., 1979, vol. 15, no. 4, p. 395.Google Scholar
  6. 6.
    Kirchheim, R., Heine, B., Fishmeister, H., et al., Corros. Sci., 1989, vol. 29, no. 7, p. 899.CrossRefGoogle Scholar
  7. 7.
    Haupt, S. and Strehblow, H.-H., Corros. Sci., 1995, vol. 37, p. 43.CrossRefGoogle Scholar
  8. 8.
    Keller, P. and Strehblow, H.-H., Corros. Sci., 2004, vol. 46, p. 1939.CrossRefGoogle Scholar
  9. 9.
    Olefjord, I. and Fishmeister, H., Corros. Sci., 1975, vol. 15, p. 697.CrossRefGoogle Scholar
  10. 10.
    Andreev, Yu.Ya. and Shumkin, A.A., Zashch. Met., 2006, vol. 42, no. 3, p. 239.Google Scholar
  11. 11.
    Andreev, Yu.Ya., Zh. Fiz. Khim., 2007, vol. 81, no. 6, p. 1106.Google Scholar
  12. 12.
    Andreev, Yu.Ya., Zh. Fiz. Khim., 2002, vol. 76, no. 2, p. 338.Google Scholar
  13. 13.
    Andreev, Yu.Ya. and Safonov, I.A., Zh. Fiz. Khim., 2009, vol. 83, no. 10, p. 1953.Google Scholar
  14. 14.
    Zhukhovitskii, A.A., Zh. Fiz. Khim., 1944, vol. 18, nos. 5–6, p. 214.Google Scholar
  15. 15.
    Khokonov, K.V., J. Appl. Phys., 1983, vol. 54, p. 1346.CrossRefADSGoogle Scholar
  16. 16.
    Vitos, L., Ruban, A.V., and Skriver, H.L., Surf. Sci., 1998, vol. 411, p. 186.CrossRefADSGoogle Scholar
  17. 17.
    Andreev, Yu.Ya. and Kutyrev, A.E., Zh. Fiz. Khim., 2001, vol. 75, no. 4, p. 689.Google Scholar
  18. 18.
    Roberts, M.W. and MacKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon, 1978.Google Scholar
  19. 19.
    Smithls, C.D., Metals Reference Book, Collins, I., Ed., London: Butterworth, 1976.Google Scholar
  20. 20.
    Swalin, R.A., Thermodynamics of Solids (Science and Technology of Materials), New York: Wiley, 1973.Google Scholar
  21. 21.
    Zaitsev, A.I., Zemchenko, M.A., and Mogutnov, B.M., Zh. Fiz. Khim., 1990, vol. 64, no. 5, p. 1195.Google Scholar
  22. 22.
    Andreev, Yu.Ya., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 6, p. 669.Google Scholar
  23. 23.
    Okamoto, G., Corros. Sci., 1973, vol. 13, p. 471.CrossRefGoogle Scholar
  24. 24.
    Hansen, M. and Anderko, K., Constitution of Binary Alloys, New York: Genium Pub. Corp., 1988.Google Scholar
  25. 25.
    Elliott, R.P., Constitution of Binary Alloys, New York: Genium Pub. Corp., 1988.Google Scholar
  26. 26.
    Vetter, K.J., Elektrochemische Kinetik (Electrochemical Kinetics), Berlin: Springer, 1961.Google Scholar
  27. 27.
    Kaesche, H., Die Korrosion der Metalle (Corrosion of Metals), Berlin: Springer, 1979.Google Scholar
  28. 28.
    Lupis, C.H.P., Chemical Thermodynamics of Materials, Amsterdam: Elsevier, 1983.Google Scholar
  29. 29.
    Andreev, Yu.Ya., Shumkin, A.A., and Safonov, I.A., Korroz.: Mater. Zashch., 2007, no. 12, p. 9.Google Scholar
  30. 30.
    Sukhotin, A.M. and Lisovaya, E.V., Korroz. Zashch. Korroz., 1986, vol. 12, p. 61.Google Scholar
  31. 31.
    Sukhotin, A.M., Fizicheskaya khimiya passiviruyushchikh plenok na zheleze (The Physical Chemistry of Passivating Films on Iron), Leningrad: Khimiya, 1989.Google Scholar
  32. 32.
    Uhlig, H.H., Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, New York: Wiley, 1965.Google Scholar
  33. 33.
    Shabanova, I.N. and Vasil’ev, V.Yu., Zashch. Met., 1989, vol. 25, no. 4, p. 622.Google Scholar
  34. 34.
    Kasparova, O.V., Baldokhin, Yu.V., and Solomatin, A.S., Zashch. Met., 2005, vol. 41, no. 2, p. 127.Google Scholar
  35. 35.
    Reformatskaya, I.I., Podobaev, A.N., Trofimova, E.V., and Ashcheulova, I.I., Zashch. Met., 2004, vol. 40, no. 3, p. 229.Google Scholar
  36. 36.
    Rebinder, P.A., Z. Phys., 1931, vol. 72, p. 91.Google Scholar
  37. 37.
    Likhtman, V.I., Rebinder, P.A., and Karpenko, G.V., Vliyanie poverkhnostno-aktivnoi sredy na protsessy deformatsii metallov (The Effect of Surface-Active Environment On the Metal Deformation Processes), Moscow: AN SSSR, 1954.Google Scholar
  38. 38.
    Cihal, V., Intergranular Corrosion of Steel and Alloy, Berlin: Elsevier, 1984.Google Scholar
  39. 39.
    Andreev, Yu.Ya. and Kutyrev, A.E., Zashch. Met., 2004, vol. 40, no. 3, p. 272.Google Scholar
  40. 40.
    Chulanov, O.B., Chernova, G.P., Serdyuk, T.M., and Tomashov, N.D., Zashch. Met., 1988, vol. 24, no. 1, p. 98.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow Institute of Steel and AlloysNational University of Science and TechnologyMoscowRussia

Personalised recommendations