Current state and problems in surface tension of solids, logical and experimental analysis of basic equations

Modern Problems of Physical Chemistry of Surfaces, Materials Science and Protection

Abstract

Of the four basic thermodynamic equations for the surface tension of solids: the generalized and classical Lippmann equations, and the Shuttleworth and Gokhshtein equations, only the Gokhshtein equation has been confirmed experimentally. The generalized Lippmann equation is generally considered to be more universal, since three other equations could be derived from it. This fact has been widely accepted, but recently it was reevaluated in two opposite ways. In the first approach, the experimental verification of the Gokhshtein equation should support the correctness of the generalized Lippmann and Shuttleworth equations. In the second approach, the incompatibility of the Shuttleworth equation with Hermann’s mathematical structure of thermodynamics raises doubts upon all its corollaries, including the generalized Lippmann and Gokhshtein equations. Both these logical approaches are shown to be erroneous, since the Gokhshtein equation cannot be correctly derived from any of the above-mentioned equations, and the opposite is also true: neither the generalized Lippmann nor Shuttleworth equations could be derived from the Gokhshtein equation. The high sensitivity of the contact electric resistance method to negative adsorbate charge allows detail investigation of the kinetics of the charge transfer during anion adsorption. For the fist time, this permits a tentative approach to quantify the potential dependence of the partial charge transfer during halide ions adsorption on IB metals.

Keywords

Surface Enhance Raman Spectroscopy Contact Electric Resistance Surface Enhance Raman Spectroscopy Partial Charge Transfer Surface Enhance Raman Spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lippmann, F., Ann. Chem. Phys., 1875, vol. 5, p. 494.Google Scholar
  2. 2.
    Gibbs, J.W., The Scientific Papers of J. Willard Gibbs, N.Y.: Longmans and Green, 1931, vol. 1, p. 315.Google Scholar
  3. 3.
    Shuttleworth, R., Proc. Phys. Soc., 1959, vol. A 63, p. 444.ADSGoogle Scholar
  4. 4.
    Udin, H., Shaler, A.J., and Wulff, J., Metall. Trans. AIME, 1949, vol. 185, p. 186.Google Scholar
  5. 5.
    Eriksson, J.C., Surface Sci., 1969, vol. 14, p. 221.CrossRefADSGoogle Scholar
  6. 6.
    Couchman, P.R. and Jesser, W.A., Surface Sci., 1973, vol. 34, p. 212.CrossRefADSGoogle Scholar
  7. 7.
    Couchman, P.R. and Davidson, C.R., Electroanal. J. Chem., 1977, vol. 85, p. 407.CrossRefGoogle Scholar
  8. 8.
    Trasatti, S. and Parsons, R., Pure Appl. Chem., 1986, vol. 59, p. 437.CrossRefGoogle Scholar
  9. 9.
    Gokhshtein, A.Ya., Russian Chem. Rev., 1975, vol. 44, p. 921.CrossRefADSGoogle Scholar
  10. 10.
    Gokhshtein, A.Ya., Surface Tension of Solids and Adsorption, Moscow: Nauka, 1976.Google Scholar
  11. 11.
    Guidelli, R., J. Electroanal. Chem., 1998, vol. 453, p. 69.CrossRefGoogle Scholar
  12. 12.
    Haiss, W., Nichols, R.J., Sass, J.K., and Charle, K.P., J. Electroanal. Chem., 1998, vol. 452, p. 199.CrossRefGoogle Scholar
  13. 13.
    Haiss, W., Rep. Prog. Phys., 2001, vol. 64, p. 591.CrossRefADSGoogle Scholar
  14. 14.
    Valincius, G., J. Electroanal. Chem., 1999, vol. 478, p. 40.CrossRefGoogle Scholar
  15. 15.
    Proost, J., J. Solid State Electrochem., 2005, vol. 9, p. 660.CrossRefGoogle Scholar
  16. 16. (a)
    Garcia-Araez, N., Climent, V., Herrero, E., et al., J. Electroanal. Chem., 2005, vol. 576, p. 33, vol. 582, p. 76CrossRefGoogle Scholar
  17. 16. (b)
    Lipkowski, J., Shi, Z., Chen, A., et al., Electrochim. Acta, 1998, vol. 43, p. 2875.CrossRefGoogle Scholar
  18. 17. (a)
    Grafov, B.M. and Paasch, G., J. Solid State Electrochem., 2006, vol. 10, p. 636, Russian J. Electrochem., 2009, vol. 45, p. 78CrossRefGoogle Scholar
  19. 17. (b)
    Eriksson, J.C. and Rusanov, A.I., Surface Sci., 2009, vol. 603, p. 2348.CrossRefADSGoogle Scholar
  20. 18.
    Frumkin, A.N., Potentials of Zero Charge, Moscow: Nauka, 1979.Google Scholar
  21. 19.
    Làng, G. and Heusler, K.E., J. Electroanal. Chem., 1994, vol. 377, p. 1.CrossRefGoogle Scholar
  22. 20.
    Làng, G. and Heusler, K.E., J. Electroanal. Chem., 1999, vol. 472, p. 168.CrossRefGoogle Scholar
  23. 21.
    Guidelli, R., J. Electroanal. Chem., 1999, vol. 472, p. 174.CrossRefGoogle Scholar
  24. 22. (a)
    Marichev, V.A., Surface Sci. Rep., 2001, vol. 44, p. 51CrossRefADSGoogle Scholar
  25. 22. (b)
    Marichev, V.A., Surface Sci. Rep., 2005, vol. 56, p. 277.CrossRefADSGoogle Scholar
  26. 23.
    Marichev, V.A., Surface Sci., 2006, vol. 600, p. 4527, 2008, vol. 602, p. 1131.CrossRefADSGoogle Scholar
  27. 24.
    Marichev, V.A., Chem. Phys. Lett., 2007, vol. 434, p. 218.CrossRefADSGoogle Scholar
  28. 25.
    Marichev, V.A., Protection of Metals, 2008, vol. 44, no. 1, p. 99.Google Scholar
  29. 26.
    Marichev, V.A., Protection of Metals, 2008, vol. 44, no. 2, p. 105.Google Scholar
  30. 27.
    Marichev, V.A., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 1, p. 1.Google Scholar
  31. 28.
    Marichev, V.A., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 3, p. 241.Google Scholar
  32. 29.
    Bottomley, D.J., Makkonen, L., and Kolari, K., Surface Sci., 2009, vol. 603, p. 97.CrossRefADSGoogle Scholar
  33. 30.
    Hermann, R., Geometry, Physics and Systems, N.Y.: Marcel Dekker Inc., 1973, Ch. 6, p. 259.MATHGoogle Scholar
  34. 31.
    Marichev, V.A., Surface Sci., 2009, vol. 603, p. 2345.CrossRefADSGoogle Scholar
  35. 32.
    Eriksson, J.C. and Rusanov, A.I., Surface Sci., 2009, vol. 603, p. 2348.CrossRefADSGoogle Scholar
  36. 33.
    Ibach, H., Surface Sci., 2009, vol. 603, p. 2352.CrossRefADSGoogle Scholar
  37. 34.
    Bottomley, D.J., Makkonen, L., and Kolari, K., Surface Sci., 2009, vol. 603, (a) p. 2347; (b) p. 2350; (c) p. 2356.CrossRefADSGoogle Scholar
  38. 35.
    Marichev, V.A., Electrochem. Commun., 2008, vol. 10, p. 643.CrossRefGoogle Scholar
  39. 36.
    Marichev, V.A., Electrochim. Acta, 2008, vol. 53, p. 7953.Google Scholar
  40. 37.
    El-Aziz, A.M. and Kibler, L., Electrochem. Commun., 2002, vol. 4, p. 866.CrossRefGoogle Scholar
  41. 38.
    Spendelow, J.S., Goodpaster, J.D., Kenis, P.J.A., and Wieckowski, A., J. Chem. Phys. B, 2006, vol. 110, p. 9545.CrossRefGoogle Scholar
  42. 39.
    Lorenz, W. and Salie, G., Z. Phys. Chem., 1961, vol. 218, p. 259.Google Scholar
  43. 40.
    Lorenz, W., Z. Phys. Chem., 1961, vol. 218, p. 272.Google Scholar
  44. 41.
    Vetter, K.J., Schultze, J.W., and Bunsenges, Ber., Phys. Chem., 1972, vol. 76, pp. 920, 927.Google Scholar
  45. 42.
    Schultze, J.W. and Rolle, R., J. Electroanal. Chem., 2003, vol. 552, p. 163.CrossRefGoogle Scholar
  46. 43.
    Frumkin, A.N, Damaskin, B.B., and Petrii, O.A., J. Electroanal. Chem., 1974, vol. 53, p. 57.CrossRefGoogle Scholar
  47. 44.
    Frumkin, A.N. and Petrii, O.A., Electrochim. Acta, 1975, vol. 20, p. 347.CrossRefGoogle Scholar
  48. 45.
    Horanyi, G., Thermodynamic and Electrified Interfaces, Encyclopedia of Electrochemistry, Gileadi, E. and Urbakh, M., Eds., Weinheim: Wiley-VCH, 2002, p. 349.Google Scholar
  49. 46.
    de Levie, R., J. Electroanal. Chem., 2004, vol. 562, p. 273.CrossRefGoogle Scholar
  50. 47.
    Guidelli, R. and Schmickler, W., Modern Aspects of Electrochemistry, 2005, no. 38, p. 303.Google Scholar
  51. 48.
    Bangle, B., Parsons, R., Sass, J.K., and Straehler, B., J. Electroanal. Chem., 1987, vol. 229, p. 87; Parsons, R., Chem. Rev., 1990, vol. 90, p. 813.CrossRefGoogle Scholar
  52. 49.
    Ueno, K. and Seo, M., J. Electrochem. Soc., 1999, vol. 146, p. 1496.CrossRefGoogle Scholar
  53. 50.
    Mrozek, M.F. and Weaver, M.J., J. Am. Chem. Soc., 2000, vol. 122, p. 150; Gao, P. and Weaver, M.J., J. Electroanal. Chem., 1987, vol. 233, p. 337.CrossRefGoogle Scholar
  54. 51.
    Kazarinov, V.E., Foontikov, A.M., and Tsirlina, G.A., J. Electroanal. Chem., 1990, vol. 282, p. 253.CrossRefGoogle Scholar
  55. 52.
    Hanewinkel, C., Otto, A., and Wandlowski, Th., Surface Sci., 1999, vol. 429, p. 255; Rikvold, R.A., Wandlowski, Th., Abou Hamad, I., et al., Electrochim. Acta, 2007, vol. 52, p. 1932.CrossRefADSGoogle Scholar
  56. 53.
    Wandlowski, Th., Wang, J.X., and Ocko, B.M., J. Electroanal. Chem., 2001, vol. 500, p. 418.CrossRefGoogle Scholar
  57. 54.
    Marichev, V.A., Chem. Phys. Lett., 2005, vol. 411, p. 434.CrossRefADSGoogle Scholar
  58. 55.
    Pearson, R.G., Inorganica Chimica Acta, 1995, vol. 240, p. 93.CrossRefGoogle Scholar
  59. 56.
    Sass, J.K. and Gimzewski, J.K., J. Electroanal. Chem., 1988, vol. 251, p. 241.CrossRefGoogle Scholar
  60. 57.
    Hasegawa, S. and Grey, F., Surface Sci., 2002, vol. 500, p. 84.CrossRefADSGoogle Scholar
  61. 58.
    Schmickler, W., Chem. Phys., 2003, vol. 289, p. 349.CrossRefADSGoogle Scholar
  62. 59.
    Yoon, J.-S., Bae, S.-E., Yoon, J.-H., et al., Electrochim. Acta, 2005, vol. 50, p. 4230.CrossRefGoogle Scholar
  63. 60.
    Crowe, M.J., Duhem and History and Philosophy of Mathematics, Syntheses, 1990, vol. 83, p. 431.MathSciNetGoogle Scholar
  64. 61.
    Marichev, V.A., Phil. Mag., 2009, vol. 89, no. 33, p. 3037.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Western OntarioLondonCanada

Personalised recommendations