Bridged polysilsequioxane adsorption materials containing phosphonic acid residues

  • I. V. Mel’nik
  • N. V. Stolyarchuk
  • O. A. Dudarko
  • Yu. L. Zub
  • A. Dabrowski
  • M. Barczak
  • B. Alonso
Molecular and Supramolecular Structures at the Interfaces


Reactions of hydrolytic polycondensation of bis(triethoxysilane) [(C2H5O)3Si]2C2H4 (or [(C2H5O)3Si]2C6H4) and functional agent (C2H5O)3Si(CH2)2P(O)(OC2H5)2 (alkoxysilanes molar ratio of 2: 1 and 4: 1, fluoride ion catalyst and ethanol solvent) yielded powder-like xerogels that contained phosphonic acid residues in the surface layer. Their treatment with boiling concentrated hydrochloric acid resulted in transformation of functional groups ≡Si(CH2)2P(O)(OC2H5)2 into acid groups ≡Si(CH2)2P(O)(OH)2. The methods of IR, 1H MAS NMRm and 13C, 29Si, 31P MAS NMR spectroscopy showed the following (1) The surface layer in the initial xerogels contains not only phosphorus functional groups, but also some non-hydrolyzed ethoxysilyl groups as well as silanol groups. (2) The hydrochloric acid treatment of the initial xerogels causes the hydrolysis of not only ethoxy groups in the phosphonic acid residues, but also most residual ethoxysilyl groups. (3) Vacuum drying of xerogels after acid treatment forms ≡Si(CH2)2P(O)(OH)-OSi≡ links in their surface layer (not more than 20% of phosphorus-containing groups). (4) According to 29Si CP MAS NMR spectroscopic data, boiling acid treatment relatively enriches the xerogel structure T2 and T3 units and accounts for the higher rigidity of the hybrid framework. These units also account for retention of the porous structure in these xerogels over time, while most initial xerogels have porous structures that collapse in 12–18 months of storage. The acid-treated xerogels were attributed to microporous adsorbents (having specific surface area of 620 to 760 m2/g). According to the AFM data, both initial and acid-treated xerogels contain almost spherical aggregates of the primary particles (globules).


Ethoxy Group Phenylene Bridge Ethoxysilyl Group Initial Xerogels Phosphonic Acid Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sullivan, A.C. and Wilson, J.R.H., US Pat. 0077889 A1, 2004.Google Scholar
  2. 2.
    Zub, Yu.L. and Parish, R.V., Stud. Surf. Sci. Catal., 1996, vol 99, p. 285.CrossRefGoogle Scholar
  3. 3.
    Zub, Yu.L. and Chuiko, A.A., Colloidal Silica: Fundamentals and Applications, Bergna, H.E. and Roberts, W.O. (Eds.), Boca Raton: CRC Press, 2006, p. 397.Google Scholar
  4. 4.
    Avnir, D., Klein. L.G, Levy, D. et al., The Chemistry of Organic Silicon Compounds, Rappoport, Z. and Apeloig, Y. (Eds), Chichister: Wiley, 1998 vol. 2, p.2317.CrossRefGoogle Scholar
  5. 5.
    Voronkov, M.G., Vlasova, N.N., and Pozhidaev, Yu.N., Appl. Organometal. Chem., 2000 vol. 14, p.287.CrossRefGoogle Scholar
  6. 6.
    Pozhidaev, Yu.N., Doctoral Diss. (Chem.), Irkutsk: IrIKh SO RAN, 2004.Google Scholar
  7. 7.
    Bezomber, J.-P., Chuit, C., Gorriu, R.J.P., et al., J. Mater. Chem., 1998 vol. 8, p.1749.CrossRefGoogle Scholar
  8. 8.
    Aliev, A., Ou, D.L., Ormsby, B., et al., J.Mater. Chem., 2000 vol. 10, p.2758.CrossRefGoogle Scholar
  9. 9.
    Carbonneau, G., Frantz, R., Durand, J.-O., et al., J. Mater. Chem., 2002 vol. 12, p.540.CrossRefGoogle Scholar
  10. 10.
    Jurado-Gonzalez, M., Ou, D. L., Sullivan, A.C., et al., J. Mater. Chem., 2002 vol. 12, p.3605.CrossRefGoogle Scholar
  11. 11.
    Dudarko, O.A., Mel’nik, I. V., Zub, Yu.L., et al., Kolloid. Zh., 2005 vol. 67, no. 5, p.753.Google Scholar
  12. 12.
    Shea, K., J., Loy, D.A., and Webster, O.W., J. Am. Chem. Soc., 1992 vol. 114, p.6700.CrossRefGoogle Scholar
  13. 13.
    Dabrowski, A., Barczak, M., Stolyarchuk (Shvaykovska), N.V., et al., Adsorption, 2005, no. 11, p.497.Google Scholar
  14. 14.
    Melnyk, I.V., Stolyarchuk, N.V., Dudarko, O.A., et al., Abstracts of 4th Int. Conf. on Sol-Gel Materials, Kliczkow Castle, Poland, 2006, p.61.Google Scholar
  15. 15.
    Gordon, A. and Ford, R., Sputnik khimika (Chemist’s Guide), Moscow: Mir, 1976, p.541.Google Scholar
  16. 16.
    Brunauer, J.S., Emmet P.H., and Teller, E., J. Am. Chem. Soc., 1938 vol. 60, p.309.CrossRefADSGoogle Scholar
  17. 17.
    Barrett, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951 vol. 73, p.373.CrossRefGoogle Scholar
  18. 18.
    Shvaykovska, N.V., Mel’nik, I.V., Yurchenko, G.R., et al., Khim., Fiz. i Tekhnol. Poverkh., 2004, no. 10, p.80.Google Scholar
  19. 19.
    Lin-Vien, D., Colthup, N.B., Fateley, W.G., et al., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, San Diego, CA: Academic Press, 1991, p.504.Google Scholar
  20. 20.
    Finn, L.P. and Slinyakova, I.B., Kolloid. Zh., 1975 vol. 37, no. 4, p.723.Google Scholar
  21. 21.
    Cardenas, A., Hovnanian, N., and Smaihi, M., J. Appl. Polym Sci., 1996 vol. 60, p.2279.CrossRefGoogle Scholar
  22. 22.
    Dabrowski, A., Barchak, M., Dudarko, O.A., et al., Pol. Chem. J., 2007 vol. 81, p.475.Google Scholar
  23. 23.
    Dudarko, O.A., Mel’nik, I.V., Zub, Yu.L., et al., Neorg. Mater., 2006 vol. 42, no. 4, p.413.CrossRefGoogle Scholar
  24. 24.
    Rouquerol, F., Rouquerol, J., and Sing, K., Adsorption by Powders and Porous Solids, Principles, Methodology and Application, New York: Academic Press, 1999, p.467.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. V. Mel’nik
    • 1
  • N. V. Stolyarchuk
    • 1
  • O. A. Dudarko
    • 1
  • Yu. L. Zub
    • 1
  • A. Dabrowski
    • 2
  • M. Barczak
    • 2
  • B. Alonso
    • 3
  1. 1.Chuiko Institute of Surface ChemistryUkrainian National Academy of SciencesKievUkraine
  2. 2.Faculty of ChemistryUniversity of Maria Curie-SklodowskaLublinPoland
  3. 3.Institute Charles Gerhardt — UMR 5253 (CNRS/ENSCM/UM2/UM1)Montpellier Cedex 5France

Personalised recommendations