Effect of plasma treatment on corrosion-electrochemical behavior of titanium in molten mixture of cesium and sodium chlorides

New Substances, Materials and Coatings


The effect of high-temperature pulsed plasma (HTPP) on the corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides in an argon atmosphere at temperatures of 790–810 K is studied. Upon the HTPP treatment in an oxygen or helium environment, a modified corrosion-resistant layer with a thickness up to 20 µm is formed on the titanium surface and decreases the corrosion rate of titanium in a chloride melt by a factor of 10–16.


Titanium Corrosion Rate Cesium Sodium Chloride Plasma Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nicolas, G., Yanez, A., Ramil, A., et al., Appl. Surf. Sci., 1999, vols. 138–139, p. 169.CrossRefGoogle Scholar
  2. 2.
    Gyorgy, E., Perez Del Pino, A., Serra, P., and Moren-za, J.L., Appl. Surf. Sci, 2002, vol. 186, p. 130.CrossRefADSGoogle Scholar
  3. 3.
    Kamada, K., Mukai, M., and Matsumoto, Y., Electrochim. Acta, 2004, vol. 49, p. 321.CrossRefGoogle Scholar
  4. 4.
    Yakovleva, M.N., Anicai, L., and Yakovlev, A.N., Thin Solid Films, 2002, vol. 416, p. 16.CrossRefADSGoogle Scholar
  5. 5.
    Nikitina, E.V., Kudyakov, V.Ya., and Sannikov, V.I., Rasplavy, 2000, vol. 3, p. 64.Google Scholar
  6. 6.
    Elshina, L.A., Kudyakov, V.Ya., and Molchanova, N.G., Rasplavy, 2007, vol. 6, p. 73.Google Scholar
  7. 7.
    Kalin, B.A., Yakushin, V.L., and Pol’skii, V.I., Izv. Vuzov: Fizika, 1994, vol. 5, p. 109.Google Scholar
  8. 8.
    Tomashov, N.D., Skvortsova, I.B., Alekseev, V.A., et al., Zashch. Met., 1988, vol. 24, p. 395.Google Scholar
  9. 9.
    Flores, M., Muhl, S., and Andrade, E., Thin Solid Films, 2003, vol. 433, p. 217.CrossRefADSGoogle Scholar
  10. 10.
    Ying Fu, Xingfang Wu, Yue Wang, et al., Appl. Surf. Sci., 2000, vol. 157, p. 167.CrossRefADSGoogle Scholar
  11. 11.
    Yakushin, V.L., Kalin, B.A., Dzhumaev, P.S., et al., Voprosy Atom. Nauki Tekhn.. Ser. Fizika Radiats. Povrezhd. Radiats. Metalloved., 2005, vol. 86, no. 3, p. 128.Google Scholar
  12. 12.
    Elshina, L.A., Kudyakov, V.Ya., Zyryanov, V.G., et al., Zashch. Met., 1998, vol. 34, p. 632.Google Scholar
  13. 13.
    Vasil’ev, V.I., Zhitlukhin, A.M., and Tserevitinov, S.S., Tr. Nauch. Sessii MIFI, 2000, P. 9, p.36.Google Scholar
  14. 14.
    Abkowitz, S., Burke, J.J., and Hiltz, R.H., Titanium in Industry: Technology of Structural Titanium, New York: D. van Nostrand, 1955. Moscow: Oborongiz, 1957.Google Scholar
  15. 15.
    Smirnov, M.V., Elektrodnye potentsialy v rasplavlennykh khloridakh (Electrode Potentials in Molten Chlorides), Moscow: Nauka, 1973.Google Scholar
  16. 16.
    Zaluzhnyi, A.G., Kalin, B.A., Kopytin, V.P., et al., Zh. Teor. Fiziki, 2001, vol. 71, p. 31.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. A. Elshina
    • 1
  • V. Ya. Kudyakov
    • 1
  • V. B. Malkov
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Urals BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations