Synergistic inhibition between Schiff’s bases and sulfate ion on corrosion of aluminium in sulfuric acid

  • T. Sethi
  • A. Chaturvedi
  • R. K. Upadhyaya
  • S. P. Mathur
Physicochemical Problems of Materials Protection


The effect of Schiff’s bases alone and Schiff’s bases with additive Na2SO4 on the corrosion of aluminium in H2SO4 have been investigated by using weight loss method. The present study revealed that aluminium in H2SO4 has been more efficiently inhibited by Schiff’s bases in the presence of additive Na2SO4 than Schiff’s bases alone due to the synergistic effect between Schiff’s bases and Na2SO4. Inhibition efficiency was found maximum upto 95.02% for aluminium in H2SO4 by Schiff’s bases in presence of additive NaNa2SO4. The adsorption of inhibitor accords with the Langmuir adsorption isotherm. Results obtained in both the cases indicate the dependence of inhibition efficiencies on the concentration of Schiff’s bases, additive Na2SO4 and also on the concentration of H2SO4 solution. The results show the increasing trends of inhibition efficiency with the concentration.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uligh, H.H., Corrosion and Corrosion Control an Introduction to Corrosion Science and Engineering, N.Y.: Wiley & Sons, 1971.Google Scholar
  2. 2.
    Bastidas, J.M. and Otero, E., Mater. Corros., 1996, vol. 47, p. 333.CrossRefGoogle Scholar
  3. 3.
    Nathan, C.C. and Perugini, J.J., Materials Performance, 1974, vol. 13, p. 29.Google Scholar
  4. 4.
    Porter, F.C., Metalurgia, 1962, vol. 65, p. 65.Google Scholar
  5. 5.
    Aziz, P.M. and Godard, H.P., Corrosion, 1959, vol. 15, p. 529.Google Scholar
  6. 6.
    Ebenso, E.E., Okafor, P.C., and Eppe, U.J., Anticorr. Meth. Mat., 2003, vol. 50, no. 6, p. 414.CrossRefGoogle Scholar
  7. 7.
    Blanc, C., Gastaud, S., and Mankowski, G., J. Electrochem. Soc., 150(B) 2003, vol. 150, p. 396.CrossRefGoogle Scholar
  8. 8.
    Mosaleva, A., Poznyok, A., Mozaleva, I., et al., Electrochem. Comm., 2001, vol. 3, p. 299.CrossRefGoogle Scholar
  9. 9.
    Klassen, R.D., Hyatt, C.V., Roberge, P.R., et al., J. Canadian Metallurgical, 2002, vol. 41, no. 1, p. 121.Google Scholar
  10. 10.
    Bazzi, L., Salghi, R., Zine, E., et al., Can. J. Chem., 2002, vol. 80, no. 1, p. 106.CrossRefGoogle Scholar
  11. 11.
    Quafsaoui, W., Blanc, C.H., Bebere, N., et al., J. Appl. Electrochem., 2000, vol. 30, p. 959.CrossRefGoogle Scholar
  12. 12.
    Putilova, I.N., Balizin, S.A., and Baranmik, V.P., Metallic Corrosion Inhibitors, 1960.Google Scholar
  13. 13.
    Upadhyay, R.K., Anthony, S., and Mathur, S.P., Russ. J. Electrochem., 2007, vol. 43, p. 238.CrossRefGoogle Scholar
  14. 14.
    Sethi, T., Chaturvedi, A., Upadhyay, R.K., et al., Boletin De La Sociedad Chilena De quimica, 2007, vol. 52, no. 3, p. 1136.Google Scholar
  15. 15.
    Sethi, T., Chaturvedi, A., Upadhyay, R.K., et al., Polish J. Chem., 2008, vol. 82, p. 591.Google Scholar
  16. 16.
    Anderson, E.E., Duca, C.J., and Scudi, J.V., J. Am. Chem. Soc., 1951, vol. 73, p. 4967.CrossRefGoogle Scholar
  17. 17.
    Dodoff, N.I., Ozdemir, V., Karacan, N., et al., Naturfarch Z., 1993, vol. 548, p. 1553.Google Scholar
  18. 18.
    Erk, B., Dilmac, A., Baran, Y., et al., Synth. React. Inorg Met. Org. Chem., 2000, vol. 10, p. 30.Google Scholar
  19. 19.
    Jones, D.A., Principle and Prevention of Corrosion (2nd Ed.), London: Prentice Hall International Limited, 1996.Google Scholar
  20. 20.
    Suetaka, W., Bull. Chem. Soc., 1964, vol. 37, p. 112.CrossRefGoogle Scholar
  21. 21.
    Hoar, T.P. and Holliday, R.D., J. App. Chem., 1953, vol. 3, p. 582.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • T. Sethi
    • 1
  • A. Chaturvedi
    • 1
  • R. K. Upadhyaya
  • S. P. Mathur
    • 2
  1. 1.Department of ChemistryGovernment CollegeAjmerIndia
  2. 2.Department of Pure and Applied ChemistryM.D.S. UniversityAjmerIndia

Personalised recommendations