Influence of the composition of the liquid phase and the concentration of benzohydrazide on its effectiveness during cadmium electrodeposition from water-acetone perchlorate electrolytes

  • V. V. Kuznetsov
  • L. M. Skibina
  • R. R. Khalikov
Physicochemical Processes at the Interfaces


Cadmium-benzohydrazide complexes (2 : 1) were found to be the main electroactive species in cadmium electrodeposition from water-acetone perchlorate baths. The discharge of these complexes is preceded by their dissociation at the cathode (zone of water structure stabilization) or in the bulk of the solution (zone of acetone structure stabilization). In the microheterogeneity zone of the mixed solvent, the complexes can be reduced from the adsorbed state. The process is best inhibited at low concentrations of benzohydrazide ((c L o = 10−4 mol/l), when the electrode is covered with a very dense layer of adsorbed benzohydrazide and acetone molecules. With an increase in c L o , perchlorate anions become more adsorbable, which is accompanied by increasing facilitation of the discharge reaction (Ψ′-effect). The strongest depolarizing effect of ClO 4 anions is observed in the zone of acetone structure stabilization, which is due to selective solvation of the anion and the desalting effect of the mixed solvent.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuznetsov, V.V., Skibina, L.M., and Khalikov, R.R., Zashch. Met., 2006, vol. 42, no. 6, p. 613.Google Scholar
  2. 2.
    Kuznetsov, V.V., Skibina, L.M., Loskutnikova, I.N., and Kucherenko, S.S., Zashch. Met., 1998, vol. 34, no. 5, p. 521.Google Scholar
  3. 3.
    Kuznetsov, V.V., Skibina, L.M., and Khalikov, R.R., Zashch. Met., 2006, vol. 42, no. 4, p. 399.Google Scholar
  4. 4.
    Vetter, K., Elektrochemische Kinetik (Electrochemical Kinetics), Berlin: Springer, 1961.Google Scholar
  5. 5.
    Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2001.Google Scholar
  6. 6.
    Galus, Z., Teoretyczne podstawy elektroanalizy chemicznej, Warszawa: Panstwowe Wydawnictwo Naukowe, 1971.Google Scholar
  7. 7.
    Kuznetsov, V.V., Skibina, L.M., and Khalikov, R.R., Zashch. Met., 2007, vol. 43, no. 1, p. 75.Google Scholar
  8. 8.
    Kravtsov, V.I., Elektrodnye protsessy v rastvorakh kompleksov metallov (Electrode Processes in Solutions of Metal Complexes), Leningrad: Leningr. Gos. Univ., 1969.Google Scholar
  9. 9.
    Lorenz, W., Z. Elektrochem., 1955, vol. 49, no. 5, p. 730.Google Scholar
  10. 10.
    Marcus, R.A., Electrochim. Acta, 1968, vol. 13, no. 9, p. 995.CrossRefADSGoogle Scholar
  11. 11.
    Mishchenko, K.P. and Poltoratskii, G.M., Termodinamika i stroenie vodnykh i nevodnykh rastvorov elektrolitov (Thermodynamics and Structures of Aqueous and Nonaqueous Solutions of Electrolytes), Leningrad: Khimiya, 1976, 2nd ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. V. Kuznetsov
    • 1
  • L. M. Skibina
    • 1
  • R. R. Khalikov
    • 1
  1. 1.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations