Self-Propagating High-Temperature Synthesis of Composite Materials Based on Tungsten Carbides: Effect of Phase Composition on the Yield of Ethylene and Propylene Glycols in the One-Pot Hydrolysis–Hydrogenolysis of Cellulose

Abstract

It is shown that the reaction of the hydrolysis–hydrogenolysis of cellulose to alcohols can be catalyzed by the binary system Ca(OH)2–composite material based on tungsten carbides W2C/WC, obtained by combining mechanochemical activation and self-propagating high-temperature synthesis with an exothermic mixture of tungsten oxide, metallic magnesium, and technical carbon. It is demonstrated that the amounts of tungsten carbides (W2C, WC) and the ratio between them can be controlled by introducing inert additives (metallic tungsten or calcium carbonate) to the exothermic mixture. The order of introducing reagents to the exothermic mixture and their activation is found to affect the textural properties of the materials. Self-propagating high-temperature synthesis is shown to be superior to mechanochemical activation. The catalytic properties of these materials are studied in the hydrolysis–hydrogenolysis of cellulose. It is determined that the phase composition of the composite materials affects the yields of ethylene glycol and 1,2-polyethylene glycol and their ratio. The maximum total yield of the glycols (25–31%) is obtained using a sample with a high W2C content.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Pang, J., Zheng, M., Sun, R., Wang, A., Wang, X., and Zhang, T., Green Chem., 2016, vol. 18, no. 2, pp. 342–359. https://doi.org/10.1039/C5GC01771H

    CAS  Article  Google Scholar 

  2. 2

    Zheng, M.-Y., Wang, A.-Q., Ji, N., Pang, J.-F., Wang, X.-D., and Zhang, T., ChemSusChem, 2010, vol. 3, no. 1, pp. 63–66. https://doi.org/10.1002/cssc.200900197

    CAS  Article  PubMed  Google Scholar 

  3. 3

    hang, Y., Wang, A., and Zhang, T., Chem. Commun., 2010, vol. 46, no. 6, pp. 862–864. 10.1039/B919182H201

    CAS  Article  Google Scholar 

  4. 4

    Li, N., Zheng, Y., Wei, L., Teng, H., and Zhou, J., Green Chem., 2017, vol. 19, no. 3, pp. 682–691. https://doi.org/10.1039/C6GC01327A

    CAS  Article  Google Scholar 

  5. 5

    Hamdy, M.S., Eissa, M.A., and Keshk, S.M.A.S., Green Chem., 2017, vol. 19, no. 21, pp. 5144–5151. https://doi.org/10.1039/C7GC02122D

    CAS  Article  Google Scholar 

  6. 6

    Liu, Y., Luo, C., and Liu, H., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, no. 13, pp. 3249–3253. https://doi.org/10.1002/anie.201200351

    CAS  Article  Google Scholar 

  7. 7

    Li, Y., Liao, Y., Cao, X., Wang, T., Ma, L., Long, J., Liu, Q., and Xua, Y., Biomass Bioenergy, 2015, vol. 74, pp. 148–161. https://doi.org/10.1016/j.biombioe.2014.12.025

    CAS  Article  Google Scholar 

  8. 8

    Manaenkov, O.V., Kislitsa, O.V., Matveeva, V.G., Sulman, E.M., Sulman, M.G., and Bronstein, L.M., Front. Chem., 2019, vol. 7, p. 834. https://doi.org/10.3389/fchem.2019.00834

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Ji, N., Zheng, M., Wang, A., Zhang, T., and Chen, J.G., ChemSusChem, 2012, vol. 5, no. 5, pp. 939–944. https://doi.org/10.1002/cssc.201100575

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., and Chen, J.G., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 44, pp. 8510–8513. https://doi.org/10.1002/anie.200803233

    CAS  Article  Google Scholar 

  11. 11

    Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., Shu, Y., Stottlemyer, A.L., and Chen, J.G., Catal. Today, 2009, vol. 147, no. 2, pp. 77–85. https://doi.org/10.1016/j.cattod.2009.03.012

    CAS  Article  Google Scholar 

  12. 12

    Ooms, R., Dusselier, M., Geboers, J.A., de Beeck, B.O., Verhaeven, R., Gobechiya, E., Martens, J.A., Redl, A., and Sels, B.F., Green Chem., 2014, vol. 16, no. 2, pp. 695–707. https://doi.org/10.1039/C3GC41431K

    CAS  Article  Google Scholar 

  13. 13

    Gromov, N.V., Zhdanok, A.A., Medvedeva, T.B., Lukoyanov, I.A., Poluboyarov, V.A., Taran, O.P., Parmon, V.N., and Timofeeva, M.N., Zh. Sib. Fed. Univ., Khim., 2019, vol. 12, no. 2, pp. 269–281. https://doi.org/10.17516/1998-2836-0125

    Article  Google Scholar 

  14. 14

    Gromov, N.V., Taran, O.P., Semeykina, V.S., Danilova, I.G., Pestunov, A.V., Parkhomchuk, E.V., and Parmon, V.N., Catal. Lett., 2017, vol. 147, no. 6, pp. 1485–1495. https://doi.org/10.1007/s10562-017-2056-y

    CAS  Article  Google Scholar 

  15. 15

    Won, H.I., Nersisyan, H.H., and Won, C.W., J. Mater. Res., 2008, vol. 23, no. 9, pp. 2393–2397. https://doi.org/10.1557/jmr.2008.0289

    CAS  Article  Google Scholar 

  16. 16

    Jia, Y. and Liu, H., Catal. Sci. Technol., 2016, vol. 6, no. 19, pp. 7042–7052. https://doi.org/10.1039/c6cy00928j

    CAS  Article  Google Scholar 

  17. 17

    Sun, J. and Liu, H., Catal Today, 2014, vol. 234, pp. 75–82. https://doi.org/10.1016/j.cattod.2013.12.040

    CAS  Article  Google Scholar 

  18. 18

    Zhou, L., Wang, A., Li, C., Zheng, M., and Zhang, T., ChemSusChem, 2012, vol. 5, no. 5, pp. 932–938. https://doi.org/10.1002/cssc.201100545

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17–03–01142.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Gromov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gromov, N.V., Zhdanok, A.A., Medvedeva, T.B. et al. Self-Propagating High-Temperature Synthesis of Composite Materials Based on Tungsten Carbides: Effect of Phase Composition on the Yield of Ethylene and Propylene Glycols in the One-Pot Hydrolysis–Hydrogenolysis of Cellulose. Catal. Ind. 12, 343–352 (2020). https://doi.org/10.1134/S2070050420040030

Download citation

Keywords:

  • cellulose
  • hydrolysis–hydrogenolysis
  • ethylene glycol
  • 1,2-propylene glycol
  • tungsten carbide
  • self-propagating high-temperature synthesis