Conversion of Liquefied Hydrocarbon Gases on Industrial Nickel Catalysts

Abstract

The two-stage conversion of industrial liquefied hydrocarbon gases (LHGs) on NIAP-07-01 (NKM-1) and NIAP-03-01 catalysts is studied to obtain hydrogen-containing gases. The experiments are performed in flow reactors with fixed catalyst layers at a pressure of 0.1 MPa under the conditions of pre-reforming: temperature, 350–450°С; GHSV = 1000–3000 h−1; steam : gas ratio, (4 : 1)–(8 : 1). For steam–air reforming: temperature, 700°С; GHSV = 2000 h–1; air : gas ratio, 1.2 : 1. The concentrations of converted gas components under these conditions correspond to equilibrium values calculated using the Peng–Robinson model. The conversion of methane homologs is almost 100% during the pre-reforming stage, while the concentrations of methane and hydrogen are 32–54 and 24–47%, respectively. The main condition for the pre-reforming of hydrocarbon gases with a high methane equivalent is a Н2О : С ratio greater than 2 to avoid the formation of elemental carbon (carbonization). The yield of hydrogen-containing gas during two-stage reforming is 15.6 m3, obtained from 1 m3 of initial LHGs with a hydrogen content of 41.81%, and the total amount of CO and H2 is more than 52%.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Dunikov, D.O., Vodorodnye energeticheskie tekhnologii: Materialy seminara laboratorii VET OIVT RAN (Hydrogen Energy Technologies: Proceedings of Laboratory Seminar of Joint Institute for High Temperatures of Russian Academy of Sciences), Moscow: OIVT RAN, 2017.

  2. 2

    Dincer, I. and Acar, C., Int. J. Hydrogen Energy, 2015, vol. 40, no. 34, pp. 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

    CAS  Article  Google Scholar 

  3. 3

    Wang, X., Zhao, J., Wang, N., and Wang, L., Int. J. Hydrogen Energy, 2010, vol. 35, no. 23, pp. 12800–12807. https://doi.org/10.1016/j.ijhydene.2010.08.132

    CAS  Article  Google Scholar 

  4. 4

    Cui, X. and Kær, S.K., Int. J. Hydrogen Energy, 2018, vol. 43, no. 29, pp. 13009–13021. https://doi.org/10.1016/j.ijhydene.2018.05.083

    CAS  Article  Google Scholar 

  5. 5

    Avcı, A.K., Trimm, D.L., Aksoylu, A.E., and Önsan, Z.İ., Appl. Catal., A, 2004, vol. 258, no. 2, pp. 235–240. https://doi.org/10.1016/j.apcata.2003.09.016

  6. 6

    Jeong, H. and Kang, M., Appl. Catal., B, 2010, vol. 95, nos. 3–4, pp. 446–455. https://doi.org/10.1016/j.apcatb.2010.01.026

  7. 7

    Murzin, D.Yu., Vlasov, E.A., Postnov, A.Yu., Omarov, Sh.O., and Mal’tseva, N.V., Izv. S.-Peterb. Gos. Thechnol. Inst. (Technol. Univ.), 2014, no. 26, pp. 13–19.

  8. 8

    Jiao, Y., Zhang, J., Du, Y., Sun, D., Wang, J., Chen, Y., and Lu, J., Int. J. Hydrogen Energy, 2016, vol. 41, no. 24, pp. 10473–10482. https://doi.org/10.1016/j.ijhydene.2015.09.151

    CAS  Article  Google Scholar 

  9. 9

    Brown, L.F., Int. J. Hydrogen Energy, 2001, vol. 26, no. 4, pp. 381–397. https://doi.org/10.1016/S0360-3199(00)00092-6

    CAS  Article  Google Scholar 

  10. 10

    Kirillov, V.A., Shigarov, A.B., Amosov, Yu.I., Be-lyaev, V.D., and Urusov, A.R., Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, pp. 30–40. https://doi.org/10.1134/S0040579515010030

    CAS  Article  Google Scholar 

  11. 11

    Choi, S., Bae, J., Lee, S., Oh, J., and Katikaneni, S.P., Chem. Eng. Sci., 2017, vol. 168, pp. 15–22. https://doi.org/10.1016/j.ces.2017.04.033

    CAS  Article  Google Scholar 

  12. 12

    Kirillov, V.A., Amosov, Yu.I., Shigarov, A.B., Kuzina, N.A., Kireenkov, V.V., Parmon, V.N., Aristovich, Yu.V., Gritsai, M.A., and Svetov, A.A., Theor. Found. Chem. Eng., 2017, vol. 51, no. 1, pp. 12–26. https://doi.org/10.1134/S0040579517010110

    CAS  Article  Google Scholar 

  13. 13

    Wang, W., Turn, S.Q., Keffer, V., and Douette, A., Chem. Eng. J., 2007, vol. 129, nos. 1–3, pp. 11–19. https://doi.org/10.1016/j.cej.2006.10.027

  14. 14

    Silva, P.P., Ferreira, R.A.R., Noronha, F.B., and Hori, C.E., Catal. Today, 2017, vol. 289, pp. 211–221. https://doi.org/10.1016/j.cattod.2016.10.003

    CAS  Article  Google Scholar 

  15. 15

    Silva, P.P., Ferreira, R.A., Nunes, J.F., Sousa, J.A., Romanielo, L.L., Noronha, F.B., and Hori, C.E., Braz. J. Chem. Eng., 2015, vol. 32, no. 3, pp. 647–662. https://doi.org/10.1590/0104-6632.20150323s00003441

    CAS  Article  Google Scholar 

  16. 16

    Al-Zuhair, S., Hassan, M., Djama, M., and Khaleel, A., Chem. Eng. Commun., 2017, vol. 204, no. 2, pp. 141–148. https://doi.org/10.1080/00986445.2016.1245186

    CAS  Article  Google Scholar 

  17. 17

    Snytnikov, P.V., Potemkin, D.I., Uskov, S.I., Kurochkin, A.V., Kirillov, V.A., and Sobyanin, V.A., Catal. Ind., 2018, vol. 10, no. 3, pp. 202–216. https://doi.org/10.1134/S207005041803011X

    Article  Google Scholar 

  18. 18

    Penkuhn, M., Spieker, C., Spitta, C., and Tsatsaronis, G., Int. J. Hydrogen Energy, 2015, vol. 40, no. 38, pp. 13050–13060. https://doi.org/10.1016/j.ijhydene.2015.07.119

    CAS  Article  Google Scholar 

  19. 19

    GOST R (Russian State Standard) 52087-2018: Fuel Liquefied Hydrocarbon Gases. Specifications, 2018.

  20. 20

    Ahmed, S. and Krumpelt, M., Int. J. Hydrogen Energy, 2001, vol. 26, no. 4, pp. 291–301. https://doi.org/10.1016/S0360-3199(00)00097-5

    CAS  Article  Google Scholar 

  21. 21

    Rostrup-Nielsen, J.R. and Sehested, J., Prepr. Pap.—Am. Chem. Soc., 2003, vol. 48, no. 1, pp. 218–219.

    CAS  Google Scholar 

  22. 22

    Bengaard, H.S., Nørskov, J.K., Sehested, J., Clausen, B.S., Nielsen, L.P., Molenbroek, A.M., and Rostrup-Nielsen, J.R., J. Catal., 2002, vol. 209, no. 2, pp. 365–384. https://doi.org/10.1006/jcat.2002.3579

    CAS  Article  Google Scholar 

  23. 23

    Jaworski, Z., Zakrzewska, B., and Pianko-Oprych, P., Rev. Chem. Eng., 2017, vol. 33, no. 3, pp. 217–235. https://doi.org/10.1515/revce-2016-0022

    CAS  Article  Google Scholar 

  24. 24

    Christensen, T.S., Appl. Catal., A, 1996, vol. 138, no. 2, pp. 285–309. https://doi.org/10.1016/0926-860X(95)00302-9

  25. 25

    RF Patent 2 263 627, 2005.

  26. 26

    Spinel, E. and Winter, M.S., Gazokhimiya, 2010, no. 11, pp. 56–59.

  27. 27

    Ilyin, V.B., Yakovenko, R.E., Belashov, D.M., Zemlyakov, N.D., and Savost’yanov, A.P., Pet. Chem., 2019, vol. 59, no. 6, pp. 641–649. https://doi.org/10.1134/S0965544119060100

    CAS  Article  Google Scholar 

  28. 28

    Golosman, E.Z., Efremov, V.N., and Kashinskaya, A.V., Neftegazokhimiya, 2015, no. 2, pp. 39–43.

  29. 29

    Golosman, E.Z. and Volchenkova, S.A., Neftegazo-khimiya, 2017, no. 3, pp. 41–51.

  30. 30

    Golosman, E.Z., Dul’nev, A.V., Efremov, V.N., Kruglova, M.A., Lunin, V.V., Obysov, M.A., Polivanov, B.I., Tkachenko, I.S., and Tkachenko, S.N., Katal. Prom-sti, 2017, no. 6, pp. 487–509. https://doi.org/10.18412/1816-0387-2017-6-487-509

  31. 31

    Efremov, V.N., Golosman, E.Z., Kashinskaya, A.V., Mugenov, T.I., Zolotareva, V.E., Polivanov, B.I., and Polushin, A.P., Chim. Techno Acta, 2017, vol. 4, pp. 167–182. https://doi.org/10.15826/chimtech/2017.4.3.02

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

It was performed on equipment at the Nanotekhnologii shared resource center of South Russian State Polytechnic University (NPI).

Funding

This work was supported by the RF Ministry of Education and Science, grant no. 10.2980.2017/4.6.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. E. Yakovenko or V. B. Il’in or A. P. Savost’yanov or I. N. Zubkov or A. V. Dul’nev or O. A. Semenov.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Il’in, V.B., Savost’yanov, A.P. et al. Conversion of Liquefied Hydrocarbon Gases on Industrial Nickel Catalysts. Catal. Ind. 12, 119–126 (2020). https://doi.org/10.1134/S2070050420020117

Download citation

Keywords:

  • liquefied hydrocarbon gas
  • nickel catalyst
  • pre-reforming
  • conversion