Effect of Gas Circulation on the Synthesis of C35+ Long-Chain Hydrocarbons from CO and H2 at a High Pressure


The effect of gas recirculation on the preparation of C35+ long-chain hydrocarbons on a supported Co-Al2O3/SiO2 catalyst at 6.0 MPa, 225°C, and the gas hourly space velocity of 1000 h–1 is studied. It is shown that the circulation regime allows the catalyst bed to be isothermal and improves the selectivity and productivity of C35+ hydrocarbons. It is found that the rate of catalyst deactivation slows by a factor of eight when the circulation ratio is raised from 2.2 to 6, while the amount of unsaturated hydrocarbons in the products of synthesis doubles.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Ail, S.S. and Dasappa, S., Renewable Sustainable Energy Rev., 2016, vol. 58, pp. 267–286. https://doi.org/10.1016/j.rser.2015.12.143

    CAS  Article  Google Scholar 

  2. 2

    Adeleke, A.A., Liu, X., Lu, X., Moyo, M., and Hildebrandt, D., Rev. Chem. Eng., 2018. https://doi.org/10.1515/revce-2018-0012

  3. 3

    Chen, W., Filot, I.A.W., Pestman, R., and Hensen, E.J.M., ACS Catal., 2017, vol. 7, no. 12, pp. 8061–8071. https://doi.org/10.1021/acscatal.7b02758

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Khodakov, A.Y., Wei, C., and Fongarland, P., Chem. Rev., 2007, vol. 107, no. 5, pp. 1692–1744. https://doi.org/10.1021/cr050972v

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Verma, A., Jaso, S., Lopez, A., Chen, J., and Bracht, M., Abstract of Papers, Proc. 16th Annual Industrial Simulation Conference, Ponta Delgada, Portugal, 2018, pp. 13–15.

  6. 6

    Overtoom, R., Fabricius, N., and Leenhouts, W., Abstract of Papers, Proc. 1st Annual Gas Processing Symposium, Doha, Qatar, 2009, pp. 378–386. https://doi.org/10.1016/B978-0-444-53292-3.50046-8

  7. 7

    Kungurova, O.A., Shtertser, N.V., Chermashentseva, G.K., Simentsova, I.I., and Khassin, A.A., Catal. Ind., 2017, vol. 9, no. 1, pp. 23–30. https://doi.org/10.1134/S2070050417010081

    Article  Google Scholar 

  8. 8

    Eliseev, O.L., Savost’yanov, A.P., Sulima, S.I., and Lapidus, A.L., Mendeleev Commun., 2018, vol. 28, no. 4, pp. 345–351. https://doi.org/10.1016/j.mencom.2018.07.001

    CAS  Article  Google Scholar 

  9. 9

    Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., and Lapidus, A.L., Solid Fuel Chem., 2014, vol. 48, no. 6, pp. 404–405. https://doi.org/10.3103/S036152191406010X

    CAS  Article  Google Scholar 

  10. 10

    Savost’yanov, A.P., Narochnyi, G.B., Zemlyakov, N.D., and Yakovenko, R.E., Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2010, vol. 12, no. 4, pp. 686–690.

    Google Scholar 

  11. 11

    Narochnyi, G.B., Yakovenko, R.E., and Savost’yanov, A.P., Inzh. Vestn. Dona, 2015, no. 4. http://www.ivdon.ru/ uploads/article/pdf/IVD_14_Yakovenko.pdf_2983fc7ae6. pdf. Cited April 7, 2020.

  12. 12

    Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Bakun, V.G., Sulima, S.I., Yakuba, E.S., and Mitchenko, S.A., Kinet. Catal., 2017, vol. 58, no. 1, pp. 81–91. https://doi.org/10.1134/S0023158417010062

    CAS  Article  Google Scholar 

  13. 13

    Pereverzev, A.N., Bogdanov, N.F., and Roshchin, Yu.N., Proizvodstvo parafinov (Production of Paraffins), Moscow: Khimiya, 1973.

  14. 14

    Lu, Y. and Lee, T., J. Nat. Gas Chem., 2007, vol. 16, no. 4, pp. 329–341. https://doi.org/10.1016/S1003-9953(08)60001-8

    CAS  Article  Google Scholar 

  15. 15

    Dry, M.E., J. Mol. Catal., 1982, vol. 17, nos. 2–3, pp. 133–144. https://doi.org/10.1016/0304-5102(82)85025-6

  16. 16

    Huang, X. and Roberts, C.B., Fuel Process. Technol., 2003, vol. 83, nos. 1–3, pp. 81–99. https://doi.org/10.1016/S0378-3820(03)00060-2

  17. 17

    Van de Loosdrecht, J., Balzhinimaev, B., Dalmon, J.-A., Niemantsverdriet, J.W., Tsybulya, S.V., Saib, A.M., van Berge, P.J., and Visagie, J.L., Catal. Today, 2007, vol. 123, nos. 1–4, pp. 293–302. https://doi.org/10.1016/j.cattod.2007.02.032

  18. 18

    Tsakoumis, N.E., Rønning, M., Borg, Ø., Rytter, E., and Holmen, A., Catal. Today, 2010, vol. 154, pp. 162–182. https://doi.org/10.1016/j.cattod.2010.02.077

    CAS  Article  Google Scholar 

Download references


This work was supported by the RF Ministry of Education and Science as part of State Task no. 10.2980.2017/4.6; and by RF Presidential Grant for Young Scientists no. MK-364.2019.3.

Author information



Corresponding authors

Correspondence to R. E. Yakovenko or I. N. Zubkov or G. B. Narochnyi or A. P. Savost’yanov.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Zubkov, I.N., Narochnyi, G.B. et al. Effect of Gas Circulation on the Synthesis of C35+ Long-Chain Hydrocarbons from CO and H2 at a High Pressure. Catal. Ind. 12, 95–100 (2020). https://doi.org/10.1134/S2070050420020105

Download citation


  • Fischer–Tropsch synthesis
  • high pressure
  • gas circulation
  • C35+ long-chain hydrocarbons