Preparing Nutrient Media from Lignocellulose: Optimizing the Composition of a Multienzyme Compound

Abstract

Lignocellulose is a inexhaustible global resource for the production of a wide range of products of biotechnological synthesis. Improving the efficiency of extracting glucose from lignocellulose would allow us to increase the yield of these products and thus lower their prime cost. The aim of this work is to optimize the composition of a multienzyme compound (MEC) made using CelloLux-A, Ultraflo Core, and BrewZyme BGX commercial enzyme preparations (EPs) for the efficient enzymatic hydrolysis of an oat hull substrate treated with 4 wt % nitric acid under conditions of trial industrial production. The optimum ratio of the EPs, 1/4 : 3/4 : 0 (18 mg/g substrate CelloLux-A, 55 mg/g substrate Ultraflo Core), is found via mathematical processing of experimental data obtained using the simplex–centroid design of the experiments. The optimized composition of MEC allows the yield of the reducing substances (RSes) to be increased by 195%. The kinetics of hydrolysis at different concentrations of MEC is studied using an equation from an experimental statistical model. It is established that a 13% increase in (a) the yield of RSes from the mass of the substrate, and (b) the yield of glucose from the mass of the cellulose in the substrate, is observed when the concertation of MEC is raised 300%. The hydrolyzate obtained using the optimum MEC serves as a nutrient medium for the biosynthesis of a valuable biotechnological product, bacterial nanocellulose, the yield of which is 6.1% of the hydrolyzate glucose.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Schmid, R.D., Taschenatlas der Biotechnologie und Gentechnik, Weinheim: Wiley-VCH, 2016.

    Google Scholar 

  2. 2

    Arevalo-Gallegos, A., Ahmad, Z., Asgher, M., Parra-Saldivar, R., and Iqbal, H.M.N., Int. J. Biol. Macromol., 2017, no. 99, pp. 308–318. https://doi.org/10.1016/j.ijbiomac.2017.02.097

  3. 3

    Liu, C.-G., Xiao, Y., Xia, X.-X., Zhao, X.-Q., Peng, L., Srinophakun, P., and Bai, F.-W., Biotechnol. Adv., 2019, vol. 37, no. 3, pp. 491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Ong, K.L., Li, C., Li, X., Zhang, Y., Xu, J., and Lin, C.S.K., Biochem. Eng. J., 2019, vol. 148, pp. 108–115. https://doi.org/10.1016/j.bej.2019.05.004

    CAS  Article  Google Scholar 

  5. 5

    Cubas-Cano, E., González-Fernández, C., Ballesteros, M., and Tomás-Pejó, E., Biofuels, Bioprod. Biorefin., 2018, vol. 12, no. 2, pp. 290–303. https://doi.org/10.1002/bbb.1852

    CAS  Article  Google Scholar 

  6. 6

    Raza, Z.A., Abid, S., and Banat, I.M., Int. Biodeterior. Biodegrad., 2018, vol. 126, pp. 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001

    CAS  Article  Google Scholar 

  7. 7

    Cheng, Z., Yang, R., Liu, X., Liu, X., and Chen, H., Bioresour. Technol., 2017, vol. 234, pp. 8–14. https://doi.org/10.1016/j.biortech.2017.02.131

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Zhang, T.-Y., Wu, Y.-H., Wang, J.-H., Wang, X.,-X., Deantes-Espinosa, V.M., Dao, G.-H., Tong, X., and Hu, H.-Y., Chem. Eng. J., 2019, vol. 367, pp. 37–44. https://doi.org/10.1016/j.cej.2019.02.049

    CAS  Article  Google Scholar 

  9. 9

    Raud, M., Kikas, T., Sippula, O., and Shurpali, N.J., Renewable Sustainable Energy Rev., 2019, vol. 111, pp. 44–56. https://doi.org/10.1016/j.rser.2019.05.020

    CAS  Article  Google Scholar 

  10. 10

    World Agricultural Production. https://apps.fas.usda.gov/ psdonline/circulars/production.pdf. Cited April 5, 2020.

  11. 11

    Skiba, E.A., Baibakova, O.V., Budaeva, V.V., Pavlov, I.N., Vasilishin, M.S., Makarova, E.I., Sakovich, G.V., Ovchinnikova, E.V., Banzaraktsaeva, S.P., Vernikov-skaya, N.V., and Chumachenko, V.A., Chem. Eng. J., 2017, vol 329, pp. 178–186. https://doi.org/10.1016/j.cej.2017.05.182

    CAS  Article  Google Scholar 

  12. 12

    Grigor’eva, O.N. and Kharina, M.V., Vestn. Tekhnol. Univ., 2016, vol. 19, no. 10, pp. 128–132.

    Google Scholar 

  13. 13

    Hu, F. and Ragauskas, A., BioEnergy Res., 2012, vol. 5, no. 4, pp. 1043–1066. https://doi.org/10.1007/s12155-012-9208-0

    CAS  Article  Google Scholar 

  14. 14

    Zeng, Y., Himmel, M.E., and Ding, S.-Y., Biotechnol. Biofuels, 2017, vol. 10, article no. 263. https://doi.org/10.1186/s13068-017-0953-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Bychkov, A., Podgorbunskikh, E., Bychkova, E., and Lomovsky, O., Biotechnol. Bioeng., 2019, vol. 116, no. 5, pp. 1231–1244. https://doi.org/10.1002/bit.26925

    CAS  Article  Google Scholar 

  16. 16

    Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Zolotukhin, V.N., and Sakovich, G.V., Biochem. Eng. J., 2017, vol. 126, pp. 118–125. https://doi.org/10.1016/j.bej.2016.09.003

    CAS  Article  Google Scholar 

  17. 17

    Agrawal, R., Semwal, S., Kumar, R., Mathur, A., Gupta, R.P., Tuli, D.K., and Satlewal, A., Front. Energy Res., 2018, vol. 6. https://doi.org/10.3389/fenrg.2018.00122

  18. 18

    Dotsenko, A., Gusakov, A., Rozhkova, A., Sinitsyna, O., Shashkov, I., and Sinitsyn, A., 3 Biotech, 2018, vol. 8, no. 9. https://doi.org/10.1007/s13205-018-1419-4

  19. 19

    Caro, I., Blandino, A., Díaz, A.B., and Marzo, C., Biofuels, Bioprod. Biorefin., 2019, vol. 13, no. 4, pp. 1044–1056. https://doi.org/10.1002/bbb.1997

    CAS  Article  Google Scholar 

  20. 20

    Makarova, E.I., Budaeva, V.V., Kukhlenko, A.A., and Orlov, S.E., 3 Biotech, 2017, vol. 7, no. 5, https://doi.org/10.1007/s13205-017-0964-6

  21. 21

    Piadozo, M.E.S., in Bacterial Nanocellulose: from Biotechnology to Bio-Economy, Gama, M., Dourado, F., and Bielecki, S., Eds., Amsterdam: Elsevier, 2016, ch. 13, pp. 215–229.

    Google Scholar 

  22. 22

    De Souza, S.S., Berti, F.V., de Oliveira, K.P.V., Pittella, C.Q.P., de Castro, J.V., Pelissari, C., Rambo, C.R., and Porto, L.M., Cellulose, 2019, vol. 26, no. 3, pp. 1641–1655. https://doi.org/10.1007/s10570-018-2178-4

    CAS  Article  Google Scholar 

  23. 23

    Kurschner, K. and Hoffer, A., Fresenius’ J. Anal. Chem., 1993, vol. 92, no. 3, pp. 145–154.

    Article  Google Scholar 

  24. 24

    Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Works on Wood and Cellulose Chemistry), Moscow: Ekologiya, 1991.

  25. 25

    TAPPI (TAPPI Standard) T222 om-83: Acid-Insoluble Lignin in Wood and Pulp, 1983.

  26. 26

    TAPPI (TAPPI Standard) T211 om-85: Ash in Wood, Pulp, Paper, and Paperboard, 1985.

  27. 27

    Gladysheva, E.K., Skiba, E.A., Zolotukhin, V.N., and Sakovich, G.V., Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 179–187. https://doi.org/10.1134/S0003683818020035

    CAS  Article  Google Scholar 

  28. 28

    Miller, G.L., Anal. Chem., 1959, vol. 31, no. 3, pp. 426–428. https://doi.org/10.1021/ac60147a030

    CAS  Article  Google Scholar 

  29. 29

    Zedgenidze, I.G., Planirovanie eksperimenta dlya issledovaniya mnogokomponentnykh sistem (Design of Experiment for Studying Multicomponent Systems), Moscow: Nauka, 1976.

  30. 30

    Khimiya biomassy: biotopliva i bioplastiki (Chemistry of Biomass: Biofuels and Bioplastics), Varfolomeev, S.D., Ed., Moscow: Nauchnyi mir, 2017.

  31. 31

    Podgorbunskikh, E.M., Bychkov, A.L., and Lomovsky, O.I., Polymers, 2019, vol. 11, no. 7. https://doi.org/10.3390/polym11071201

  32. 32

    Makarova, E.I. and Budaeva, V.V., Izv. VUZov,Prikl. Khim. Biotekhnol., 2017, vol. 7, no. 4, pp. 51–57.

    CAS  Google Scholar 

  33. 33

    Xu, C., Zhang, J., Zhang, Y., Guo, Y., Xu, H., Xu, J., and Wang, Z., Bioresour. Technol., 2019, vol. 292, article no. 121993. https://doi.org/10.1016/j.biortech.2019.121993

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Carreira, P., Mendes, J.A.S., Trovatti, E., Serafim, L.S., Freire, C.S.R., Silvestre, A.J.D., and Neto, C.P., Bioresour. Technol., 2011, vol. 102, no. 15, pp. 7354–7360. https://doi.org/10.1016/j.biortech.2011.04.081

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Chen, L., Hong, F., Yang, X.-X., and Han, S.-F., Bioresour. Technol., 2013, vol. 135, pp. 464–468. https://doi.org/10.1016/j.biortech.2012.10.029

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Gladysheva, E.K., Skiba, E.A., and Aleshina, L.A., Polzunovskii Vestn., 2016, vol. 1, no. 4, pp. 152–156.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the instrumentation of the Biisk Regional Shared Resource Center, Siberian Branch, Russian Academy of Sciences (Institute for Problems of Chemical and Energetic Technologies, Siberian Branch, Russian Academy of Sciences, Biisk).

Funding

This work was supported by a grant from the Russian Science Foundation, project no. 17-19-01054.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. F. Mironova or E. A. Skiba or A. A. Kukhlenko.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mironova, G.F., Skiba, E.A. & Kukhlenko, A.A. Preparing Nutrient Media from Lignocellulose: Optimizing the Composition of a Multienzyme Compound. Catal. Ind. 12, 162–168 (2020). https://doi.org/10.1134/S2070050420020063

Download citation

Keywords:

  • oat hull
  • nitric acid treatment
  • enzymatic hydrolysis
  • multienzyme compound
  • simplex– centroid design
  • bacterial nanocellulose