Skip to main content
Log in

Mathematical Modeling of the Dehydrating Ethanol to Ethylene Process in a Multitubular Reactor on a Ring-Shaped Alumina Catalyst

  • ENGINEERING PROBLEMS. OPERATION AND PRODUCTION
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The process of dehydrating ethanol to ethylene by varying geometrical dimensions of a ring-shaped alumina catalyst is studied using a mathematical 2D model of a multitubular reactor. The set of ring sizes determines equivalent grain size Req, on which catalyst’s effectiveness factor η depends in turn. A procedure is proposed for assigning grains with different geometric dimensions to four structural groups, depending on the technique used to synthesize samples with the same equivalent size Req. Based on this approach, a system of criteria is developed for selecting catalyst grains with the best characteristics for given conditions. The geometric sizes of grains and other parameters that ensure the highest ethylene yield at the lowest values of the pressure drop and the residence time are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Vernikovskaya, N.V., Chem. Eng. J., 2017, vol. 329, pp. 15–24.

    Article  CAS  Google Scholar 

  2. Chumachenko, V.A., Ovchinnikova, E.V., Gribovskii, A.G., and Makarshin, L.L., Catal. Ind., 2016, vol. 8, no. 3, pp. 199–204. https://doi.org/10.1134/S2070050416030028

    Article  Google Scholar 

  3. Ivanchina, E.D., Ivashkina, E.N., Kozlov, I.A., Dolganova, I.O., and Platonov, V.V., Katal. Prom-sti, 2015, no. 1, pp. 55–63.

  4. Ovchinnikova, E.V., Chumachenko, V.A., and Valui-skikh, N.N., Catal. Ind., 2013, vol. 5, no. 4, pp. 297–311. https://doi.org/10.1134/S2070050413040077

    Article  Google Scholar 

  5. Beskov, V.S., Brushtein, E.A., Vanchurin, V.I., Golovnya, E.V., and Yashchenko, A.V., Catal. Ind., 2010, vol. 2, no. 3, pp. 266–269. https://doi.org/10.1134/S2070050410030104

    Article  Google Scholar 

  6. Klenov, O.P., Khanaev, V.M., Borisova, E.S., Sviri-donov, A.A., and Noskov, A.S., Katal. Prom-sti, 2008, no. S1, pp. 38–46.

  7. Kagyrmanova, A.P., Zolotarskii, I.A., Vernikovskaya, N.V., Smirnov, E.I., Kuz’min, V.A., and Chumakova, N.A., Theor. Found. Chem. Eng., 2006, vol. 40, no. 2, pp. 155–167.

    Article  CAS  Google Scholar 

  8. Davletshin, R.S., Mustafina, S.A., Balaev, A.V., and Spivak, S.I., Katal. Prom-sti, 2005, no. 6, pp. 34–40.

  9. Morschbaker, A., J. Macromol. Sci., Polym. Rev., 2009, vol. 49, no. 2, pp. 79–84.

    Article  CAS  Google Scholar 

  10. Vil’danov, F.Sh., Latypova, F.N., Chanyshev, R.R., and Nikolaeva, S.V., Bashk. Khim. Zh., 2011, no. 3, pp. 132–135.

  11. Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., and Mohanty, A.K., Prog. Polym. Sci., 2013, vol. 38, nos. 10–11, pp. 1653–1689.

  12. Yakovleva, I.S., Banzaraktsaeva, S.P., Ovchinnikova, E.V., Chumachenko, V.A., and Isupova, L.A., Catal. Ind., 2016, vol. 8, no. 2, pp. 152–167. https://doi.org/10.1134/S2070050416020148.

    Article  Google Scholar 

  13. Skiba, E.A., Baibakova, O.V., Budaeva, V.V., Pavlov, I.N., Vasilishin, M.S., Makarova, E.I., Sakovich, G.V., Ovchin-nikova, E.V., Banzaraktsaeva, S.P., Vernikovskaya, N.V., and Chumachenko, V.A., Chem. Eng. J., 2017, vol. 329, pp. 178–186.

    Article  CAS  Google Scholar 

  14. Kagyrmanova, A.P., Chumachenko, V.A., Korotkikh, V.N., Kashkin, V.N., and Noskov, A.S., Chem. Eng. J., 2011, vols. 176–177, pp. 188–194.

  15. Banzaraktsaeva, S.P., Ovchinnikova, E.V., Isupova, L.A., and Chumachenko, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 169–178.

    Article  CAS  Google Scholar 

  16. RF Patent 2609263C1, 2017.

  17. Ovchinnikova, E.V., Isupova, L.A., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 683–689.

    Article  CAS  Google Scholar 

  18. Danilevich, V.V., Lakhmostov, V.S., Zakharov, V.P., Tanashev, Yu.Yu., Sokolov, D.N., Isupova, L.A., and Parmon, V.N., Katal. Prom-sti, 2016, no. 1, pp. 13–28.

  19. Zolotarskii, I.A., Voennov, L.I., Zudilina, L.Yu., Isupova, L.A., Zotov, R.A., Medvedev, D.A., Stepanov, D.A., Livanova, A.V., Meshcheryakov, E.P., and Kurzina, I.A., Catal. Ind., 2018, vol. 10, no. 1, pp. 49–56. https://doi.org/10.1134/S2070050418010129

    Article  Google Scholar 

  20. Slin’ko, M.G., Dil’man, V.V., Markeev, B.M., and Kronberg, A.E., Khim. Prom-st’, 1980, no. 11, pp. 22–41.

  21. Slin’ko, M.G., Modelirovanie khimicheskikh reaktorov (Modeling of Chemical Reactors), Novosibirsk: Nauka, 1968.

  22. Malinovskaya, O.A., Beskov, V.S., and Slin’ko, M.G., Modelirovanie kataliticheskikh protsessov na poristykh zernakh (Modeling of Catalytic Processes on Porous Grains), Novosibirsk: Nauka, 1975.

  23. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

  24. Kruglyakov, V.Yu., Isupova, L.A., Glazyrin, A.V., Danilevich, V.V., and Kharina, I.V., Katal. Prom-sti, 2016, no. 1, pp. 6–12.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. V.Y. Kruglyakov (BIC) for experimental testing mechanical strength of alumina catalysts and valuable suggestions on their implementation and Engineer S.S. Pogodkina (BIC) for assistance in computation.

This work was conducted within the framework of the budget project АААА-А17-117041710076-7 for the Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ovchinnikova.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, E.V., Banzaraktsaeva, S.P., Kalugina, E.A. et al. Mathematical Modeling of the Dehydrating Ethanol to Ethylene Process in a Multitubular Reactor on a Ring-Shaped Alumina Catalyst. Catal. Ind. 11, 80–86 (2019). https://doi.org/10.1134/S2070050419010082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419010082

Keywords:

Navigation