Skip to main content
Log in

Magnetically Recoverable Ruthenium-Containing Catalysts for Polysaccharide Conversion

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A new Ru-containing catalyst based on Fe3O4–SiO2 particles that exhibit magnetic properties is proposed for the hydrogenolysis of cellulose to glycols and the hydrolytic hydrogenation of inulin to mannitol. The effect of process parameters on the selectivity toward the main products is studied. Under optimum conditions of cellulose hydrogenolysis, the total glycol selectivity is ≈40% (ethylene glycol, 19.1%; propylene glycol, 20.9%) at 100% cellulose conversion. In the hydrolytic hydrogenation of inulin, the maximum mannitol selectivity is 44.3% at a 100% conversion of the feed polysaccharide. The proposed catalyst is stable under hydrothermal process conditions, and can be easily separated from the reaction mass using an external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yue, H., Zhao, Y., Ma, X., and Gong, J., Chem. Soc. Rev., 2012, vol. 41, no. 11, pp. 4218–4244.

    Article  CAS  PubMed  Google Scholar 

  2. Harlin, A.H., in Handbook of Bioplastics and Biocomposites Engineering Applications, Pilla, S., Ed., Hoboken, NJ: Wiley/Scrivener, 2011. pp. 511–544.

    Google Scholar 

  3. Sugiyama, S., Tanaka, H., Bando, T., Nakagawa, K., Sotowa, K.-I., Katou, Y., Mori, T., Yasukawa, T., and Ninomiya, W., Catal. Today, 2013, vol. 203, pp. 116–121.

    Article  CAS  Google Scholar 

  4. Catalytic Process Development for Renewable Materials, Imhof, P.J. and van der Waal, J.C., Eds., Weinheim: Wiley-VCH, 2013.

  5. Ohrem, H.L., Schornick, E., Kalivoda, A., and Ognibene, R., Pharm. Dev. Technol., 2014, vol. 19, no. 3, pp. 257–262.

    Article  CAS  PubMed  Google Scholar 

  6. Luo, C., Wang, S., and Liu, H., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 40, pp. 7636–7639.

    Article  CAS  Google Scholar 

  7. Catalytic Hydrogenation for Biomass Valorization, Rinaldi, R., Ed., Cambridge: RSC Publishing, 2014.

    Google Scholar 

  8. Heinen, A.W., Peters, J.A., and van Bekkum, H., Carbohydr. Res., 2001, vol. 330, no. 3, pp. 381–390.

    Article  CAS  PubMed  Google Scholar 

  9. Manaenkov, O.V., Filatova, A.E., Makeeva, O.Yu., Kislitza, O.V., Doluda, V.Yu., Sidorov, A.I., Mat-veeva, V.G., and Sul’man, E.M., Catal. Ind., 2014, vol. 6, no. 2, pp. 150–157.

    Article  Google Scholar 

  10. Dhepe, P.L. and Fukuoka, A., Catal. Surv. Asia, 2007, vol. 11, no. 4, pp. 186–191.

    Article  CAS  Google Scholar 

  11. Kobayashi, H., Ito, Y., Komanoya, T., Hosaka, Y., Dhepe, P.L., Kasai, K., Hara, K., and Fukuoka, A., Green Chem., 2011, vol. 13, no. 2, pp. 326–333.

    Article  CAS  Google Scholar 

  12. Wang, D. and Astruc, D., Chem. Rev., 2014, vol. 114, no. 14, pp. 6949–6985.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, D. and Astruc, D., Molecules, 2014, vol. 19, no. 4, pp. 4635–4653.

    Article  CAS  PubMed  Google Scholar 

  14. Podolean, I., Negoi, A., Candu, N., Tudorache, M., Parvulescu, V.I., and Coman, S.M., Top. Catal., 2014, vol. 57, nos. 17–20, pp. 1463–1469.

  15. Zhang, C., Wang, H., Liu, F., Wang, L., and He, H., Cellulose, 2013, vol. 20, no. 1, pp. 127–134.

    Article  CAS  Google Scholar 

  16. Zhang, J., Wu, S.-B., and Liu, Y., Energy Fuels, 2014, vol. 28, no. 7, pp. 4242–4246.

    Article  CAS  Google Scholar 

  17. Manaenkov, O.V., Mann, J.J., Kislitza, O.V., Losovyj, Ya., Stein, B.D., Morgan, D.G., Pink, M., Lependina, O.L., Shifrina, Z.B., Matveeva, V.G., Sulman, E.M., and Bronstein, L.M., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 33, pp. 21285–21293.

    Article  CAS  PubMed  Google Scholar 

  18. Manaenkov, O.V., Matveeva, V.G., Sinitzyna, P.V., Ratkevich, E.A., Kislitza, O.V., Doluda, V.Yu., Sulman, E.M., Sidorov, A.I., Mann, J.J., Losovyj, Ya., and Bronstein, L.M., Chem. Eng. Trans., 2016, vol. 52, pp. 637–642.

    Google Scholar 

  19. Wu, C.-T., Qu, J., Elliott, J., Yu, K.M.K., and Tsang, S.C.E., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 23, pp. 9043–9050.

    Article  CAS  PubMed  Google Scholar 

  20. Release on the ionization constant of H2O 2007. International Association for the Properties of Water and Steam Official Website. http://www.iapws.org/relguide/ Ionization.pdf /. Cited August 14, 2017.

  21. Xiao, Z., Jin, S., Pang, M., and Liang, C., Green Chem., 2013, vol. 15, no. 4, pp. 891–895.

    Article  CAS  Google Scholar 

  22. Nadirov, N.K. and Slutskin, R.L., Kataliticheskoe gidrirovanie i gidrogenoliz uglevodov (Catalytic Hydrogenation and Hydrogenolysis of Hydrocarbons), Moscow: Khimiya, 1976.

Download references

ACKNOWLEDGMENTS

The authors thank L.M. Bronstein at the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, for her assistance in our research. This work was supported by the Russian Foundation for Basic Research, project nos. 16-08-00401, 18-08-00404; and by the Russian Science Foundation, project no. 17-19-01408.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Manaenkov, E. A. Ratkevich, O. V. Kislitsa or V. G. Matveeva.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manaenkov, O.V., Ratkevich, E.A., Kislitsa, O.V. et al. Magnetically Recoverable Ruthenium-Containing Catalysts for Polysaccharide Conversion. Catal. Ind. 10, 251–256 (2018). https://doi.org/10.1134/S2070050418030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418030054

Keywords:

Navigation