Advertisement

Catalysis in Industry

, Volume 10, Issue 1, pp 9–19 | Cite as

Low-Temperature Conversion of ortho-Hydrogen into Liquid para-Hydrogen: Process and Catalysts. Review

  • A. V. Zhuzhgov
  • O. P. Krivoruchko
  • L. A. Isupova
  • O. N. Mart’yanov
  • V. N. Parmon
Catalysis in Chemical and Petrochemical Industry
  • 38 Downloads

Abstract

The present review is devoted to some problems of the production of liquid para-hydrogen by catalytic ortho-para conversion (OPC) of molecular hydrogen at cryogenic temperatures, the catalysts of this process, and catalyst operation in hydrogen liquefiers. The methods of evaluating the catalyst activity in OPC and calculations of the performance of hydrogen liquefiers are given. The most important papers that deal with the use of catalysts of OPC under the conditions of hydrogen liquefiers were considered. A procedure for processing the experimental data on catalyst activity was presented for calculations of the laboratory and industrial hydrogen liquefiers working at different temperature levels based on these data.

Keywords

gaseous hydrogen liquid hydrogen ortho-para conversion of hydrogen cryogenic temperature catalysts hydrogen liquefier liquid para-hydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radchenko, R.V., Mokrushin, A.S., and Tyul’pa, V.V., Vodorod v energetike (Hydrogen in Power Industry), Yekaterinburg: Ural. Univ., 2014.Google Scholar
  2. 2.
    Hydrogen production and storage, International Energy Agency. www.iea.org/publications/freepublications/publication/hydrogen.pdf. Cited July 31, 2017.Google Scholar
  3. 3.
    Technology roadmap: hydrogen and fuel cells, International Energy Agency. http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapHydrogenandFuelCells. pdf. Cited July 31, 2017.Google Scholar
  4. 4.
    Hydrogen production and distribution, International Energy Agency. www.iea.org/publications/freepublications/publication/essentials5.pdf. Cited July 31, 2017.Google Scholar
  5. 5.
    CO2 free energy supply chain to Japan with liquid hydrogen, Kawasaki Heavy Industries. www.iea.org/media/workshops/2014/asiahydrogenworkshop/1.17_IEAWSKHIR2_Kawasaki.pdf. Cited July 31, 2017.Google Scholar
  6. 6.
    Buyanov, R.A. and Parmon, V.N., Katal. Prom-sti, 2017, vol. 17, no. 5, pp. 390–398.CrossRefGoogle Scholar
  7. 7.
    Farkash, L., Usp. Fiz. Nauk, 1935, vol. 15, no. 3, p. 347.CrossRefGoogle Scholar
  8. 8.
    Cunnigham, C.M. and Johnston, H.L., J. Am. Chem. Soc., 1958, vol. 80, no. 10, pp. 2377–2382.CrossRefGoogle Scholar
  9. 9.
    Acres, G.J.K., Eley, D.D., and Trillo, J.M., J. Catal., 1965, vol. 4, no. 1, pp. 12–21.CrossRefGoogle Scholar
  10. 10.
    Sandler, Y.L., J. Phys. Chem., 1954, vol. 58, no. 1, pp. 54–57.CrossRefGoogle Scholar
  11. 11.
    Wigner, E., Z. Phys. Chem., B, 1933, vol. 23, pp. 28–32.Google Scholar
  12. 12.
    Weitzel, D.H., Loebenstein, W.V., Draper, J.W., and Park, O.E., J. Res. Natl. Bur. Stand., 1958, vol. 60, no. 3, p. 221.CrossRefGoogle Scholar
  13. 13.
    Grilly, E.R., Rev. Sci. Instrum., 1953, vol. 24, no. 1, p. 1.CrossRefGoogle Scholar
  14. 14.
    Wallner, T., Lohse-Bush, H., Gurski, S., Duoba, M., Thiel, W., Martin, D., and Korn, T., Int. J. Hydrogen Energy, 2008, vol. 33, no. 24, pp. 7607–7618.CrossRefGoogle Scholar
  15. 15.
    Barrick, P.L., Weitzel, D.H., and Connolly, T.W., Adv. Cryog. Eng., 1960, vol. 1, pp. 285–290.Google Scholar
  16. 16.
    Wakao, N., Smith, J.M., and Selwood, P.W., J. Catal., 1962, vol. 1, no. 1, p. 62–73.CrossRefGoogle Scholar
  17. 17.
    Wakao, N., Selwood, P.W., and Smith, J.M., Am. Inst. Chem. Eng. J., 1962, vol. 8, no. 4, pp. 478–481.CrossRefGoogle Scholar
  18. 18.
    Keeler, R.N. and Timmerhaus, K.D., Adv. Cryog. Eng., 1960, vol. 4, pp. 296–306.Google Scholar
  19. 19.
    Laquer, H.L. and Hammel, E.F., Rev. Sci. Instrum., 1957, vol. 28, no. 11, p. 875.CrossRefGoogle Scholar
  20. 20.
    McKinley, C. and Schmauch, G., Adv. Cryog. Eng., 1964, vol. 9, pp. 217–226.CrossRefGoogle Scholar
  21. 21.
    System of KVTK based oxygen/hydrogen upper stage boosters, Website of the Khrunichev State Research and Production Center. http://www.webcitation.org/66yG2cLJ4. Cited July 31, 2017.Google Scholar
  22. 22.
    12KRB oxygen/hydrogen upper stage booster, Website of the Khrunichev State Research and Production Center. http://web.archive.org/web/20131204022148/http://www. khrunichev.ru/main.php?id=51. Cited July 31, 2017.Google Scholar
  23. 23.
    Rocket propellants, Rocket and Space Technology. http://www.braeunig.us/space/propel.htm. Cited July 31, 2017.Google Scholar
  24. 24.
    BMW opens principally new filling station. www.drive.ru/news/bmw/55a8b93395a6560c540001e4.html. Cited July 31, 2017.Google Scholar
  25. 25.
    Chemists decided to feed automobiles with hydrogen pellets. Daily Newsline. http://novostey.com/science/news160190.html. Cited July 31, 2017.Google Scholar
  26. 26.
    Kunze, K. and Kircher, O., Cryo-compressed hydrogen storage, Website of the BMW Group. www.stfc.ac.uk/stfc/cache/file/F45B669C-73BF-495BB843DCDF50E8B5A5. pdf. Cited July 31, 2017.Google Scholar
  27. 27.
    BMW Hydrogen 7, Wikipedia. https://ru.wikipedia.org/wiki/BMW_Hydrogen_7. Cited July 31, 2017.Google Scholar
  28. 28.
    Buyanov, R.A., Zel’dovich, A.G., and Pilipenko, Yu.K., Khim. Prom-st’, 1961, no. 2, p. 31.Google Scholar
  29. 29.
    Buyanov, R.A., Zel’dovich, A.G., and Pilipenko, Yu.K., Prib. Tekh. Eksp., 1961, no. 2, p. 188.Google Scholar
  30. 30.
    Buyanov, R.A., Zel’dovich, A.G., and Pilipenko, Yu.K., Gryogenics, 1962, vol. 2, no. 3, pp. 143–144.CrossRefGoogle Scholar
  31. 31.
    Buyanov, R.A., Kinet. Katal., 1960, vol. 1, no. 2, p. 306.Google Scholar
  32. 32.
    Buyanov, R.A., Kinet. Katal., 1960, vol. 1, no. 3, p. 418.Google Scholar
  33. 33.
    Weitzel, D.H. and Park, O.P., Rev. Sci. Instrum., 1956, vol. 27, no. 1, p. 57.CrossRefGoogle Scholar
  34. 34.
    Gianque, W.F., Rev. Sci. Instrum., 1954, vol. 25, no. 9, p. 886.CrossRefGoogle Scholar
  35. 35.
    Arend Vander, P.C., Chem. Eng. Prog., 1961, vol. 57, no. 10, pp. 62–67.Google Scholar
  36. 36.
    White, D. and Lassettre, E.N., J. Chem. Phys., 1960, vol. 32, no. 1, p. 72.CrossRefGoogle Scholar
  37. 37.
    Kalckar, F. and Teller, E., Proc. R. Soc. London, Ser. A, 1935, vol. 150, no. 871, pp. 520–533.CrossRefGoogle Scholar
  38. 38.
    ESM-10/0.1M modular alkali oxygen/hydrogen system. Website of the ASK Technologies. http://www.ask-technology. ru/production/index.html. Cited July 31, 2017.Google Scholar
  39. 39.
    Uralkhimmash as the greatest Russian manufacturer of electrolysis equipment for the production of oxygen and hydrogen by water electrolysis. Website of the Uralkhimmash Company. http://ekb.ru/catalog/elektrolizery/. Cited July 31, 2017.Google Scholar
  40. 40.
    Okunev, A.G., Parkhomchuk, E.V., Lysikov, A.I., Parunin, P.D., Semeikina, V.S., and Parmon, V.N., Russ. Chem. Rev., 2015, vol. 84, no. 9, pp. 981–999.CrossRefGoogle Scholar
  41. 41.
    Kozlova, E.A. and Parmon, V.N., Russ. Chem. Rev., 2017, vol. 86, no. 9, pp. 870–906. https://doi.org/10.1070/RCR4739.CrossRefGoogle Scholar
  42. 42.
    Anschutz, R.H., Adv. Cryog. Eng., 1960, vol. 5, pp. 62–68.Google Scholar
  43. 43.
    Mandell, B. and White, L.E., Adv. Cryog. Eng., 1960, vol. 5, pp. 120–127.Google Scholar
  44. 44.
    Buyanov, R.A., Kinet. Katal., 1960, vol. 1, no. 4, p. 617.Google Scholar
  45. 45.
    USSR Inventor’s Certificate no. 259835, Byull. Izobret., 1970, no. 3, p. 1.Google Scholar
  46. 46.
    USSR Inventor’s Certificate no. 253773, Byull. Izobret., 1970, no. 31, p. 1.Google Scholar
  47. 47.
    Buyanov, R.A., Krivoruchko, O.P., Kefeli, L.M., and Ostan’kovich, A.A., Kinet. Katal., 1968, vol. 9, no. 2, p. 379.Google Scholar
  48. 48.
    Krivoruchko, O.P. and Buyanov, R.A., Kinet. Katal., 1970, vol. 11, no. 2, p. 524.Google Scholar
  49. 49.
    Ryzhak, I.A., Krivoruchko, O.P., Buyanov, R.A., Kefeli, L.M., and Ostan’kovich, A.A., Kinet. Katal., 1969, vol. 10, no. 2, p. 377.Google Scholar
  50. 50.
    Dzis’ko, V.A., Noskova, S.P., Borisova, M.S., Bolgova, V.D., and Karakchiev, L.G., Kinet. Katal., 1974, vol. 15, no. 3, p. 751.Google Scholar
  51. 51.
    Simonova, L.G., Borisova, M.S., Dzis’ko, V.A., Stepashkina, S.N., and Karakchiev, L.G., Kinet. Katal., 1975, vol. 16, no. 4, p. 1036.Google Scholar
  52. 52.
    Noskova, S.P., Borisova, M.S., and Dzis’ko, V.A., Kinet. Katal., 1975, vol. 16, no. 2, p. 497.Google Scholar
  53. 53.
    Catalysts for process and off gases: NIAP-15-09. Website of the NIAP-Katalizator Company. http://niap-kt.ru/ru/production/katalizator-6/132-katalizator-ochistkitekhnologicheskikh- gazov-ot-kisloroda-niap-15-09. Cited July 31, 2017.Google Scholar
  54. 54.
    Vasil’ev, D.I. and Shal’nikov, A.I., Prib. Tekh. Eksp., 1958, no. 4, p. 106.Google Scholar
  55. 55.
    Bachmann, L., Bechtold, E., and Cremer, E., J. Catal., 1962, vol. 1, no. 2, p. 113–120.CrossRefGoogle Scholar
  56. 56.
    Fukutani, K. and Sugimoto, T., Prog. Surf. Sci., 2013, vol. 88, no. 4, pp. 279–348.CrossRefGoogle Scholar
  57. 57.
    Andrews, L. and Wang, X., J. Chem. Phys., 2004, vol. 121, no. 10, p. 4724.CrossRefGoogle Scholar
  58. 58.
    Petitpas, G., Aceves, S.M., Matthews, M.J., and Smith, J.R., Int. J. Hydrogen Energy, 2014, vol. 39, no. 12, p. 6533–6547.CrossRefGoogle Scholar
  59. 59.
    Kuz’menko, I.F., Morkovkin, I.M., Saidal’, G.I., Bezrukov, K.V., and Rumyantsev, Yu.N., Tekh. Gazy, 2009, no. 2, pp. 31–37.Google Scholar
  60. 60.
    Zel’dovich, A.G. and Pilipenko, Yu.K., Prib. Tekh. Eksp., 1964, no. 5, p. 203.Google Scholar
  61. 61.
    Barron, R.F., Cryogenic Systems, New York: Oxford University Press, 1985.Google Scholar
  62. 62.
    Kuz’menko, I.F., Rumyantsev, Yu.N., and Saidal’, G.I., Tekh. Gazy, 2008, no. 1, pp. 53–58.Google Scholar
  63. 63.
    Lenskii, A.B., Cheremnykh, O.Ya., and Lavrenchenko, G.K., Tekh. Gazy, 2013, no. 5, pp. 3–14.Google Scholar
  64. 64.
    Cheremnykh, O.Ya., Tekh. Gazy, 2012, no. 2, pp. 31–41.Google Scholar
  65. 65.
    Gorbatskii, Yu.V. and Kuz’menko, I.F., Kholod. Biznes, 2003, no. 2, pp. 34–38.Google Scholar
  66. 66.
    Saidal’, G.I., Gorbatskii, Yu.V., and Kupriyanov, V.I., Al’tern. Energ. Ekol., 2005, no. 1, pp. 30–33.Google Scholar
  67. 67.
    Kuz’menko, I.F., Morkovkin, I.M., and Gurov, E.I., Khim. Neftegazov. Mashinostr., 2004, no. 2, pp. 22–24.Google Scholar
  68. 68.
    Hydrogen liquifier, Website of the NPO Geliymash. http://www.geliymash.ru/products/124/540/. Cited July 31, 2017.Google Scholar
  69. 69.
    Kawasaki hydrogen road: hydrogen production, liquefaction of hydrogen, marine transport, storage and ground transport, utilization of hydrogen, Kawasaki Heavy Industries Website. http://global.kawasaki.com/en/stories/hydrogen/index.html. Cited July 31, 2017.Google Scholar
  70. 70.
    Construction of a liquid hydrogen production plant may be started in the Magadan region in 2015. Website of the Federation Council of the Federal Assembly of the Russian Federation. http://council.gov.ru/presscenter/news/35110/. Cited September 25, 2013.Google Scholar
  71. 71.
    Hydrogen plant will give up to 200 tons of ecofuel per day, Website of the Federation Council of the Federal Assembly of the Russian Federation. http://council.gov.ru/presscenter/news/49461/. Cited July 31, 2017.Google Scholar
  72. 72.
    Foreign trade turnover between Kolyma and Japan in 2014 exceeded 50 thousands of dollars, Website of the Government of the Magadan Region. http://www.49gov.ru/press/press_releases/index.php?id_4=7059. Cited July 31, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Zhuzhgov
    • 1
  • O. P. Krivoruchko
    • 1
  • L. A. Isupova
    • 1
  • O. N. Mart’yanov
    • 1
    • 2
  • V. N. Parmon
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations