Catalysis in Industry

, Volume 10, Issue 1, pp 20–28 | Cite as

Hydrocracking of Vacuum Gasoil on NiMoW/AAS-Al2O3 Trimetallic Catalysts: Effect of the W : Mo Ratio

  • P. P. Dik
  • V. Yu. Pereima
  • K. A. Nadeina
  • M. O. Kazakov
  • O. V. Klimov
  • E. Yu. Gerasimov
  • I. P. Prosvirin
  • A. S. Noskov
Catalysis in Petroleum Refining Industry
  • 8 Downloads

Abstract

The effect of the W: (W + Mo) atomic ratio in NiMoW trimetallic catalysts on their catalytic and physicochemical properties is studied. The catalysts are prepared by impregnating a carrier containing amorphous aluminosilicate (AAS) and aluminium oxide with an aqueous solution containing Ni, Mo, W compounds, and citric acid. They are studied via XRF, TEM, NH3 TPD, and low-temperature nitrogen adsorption and are tested in the hydrocracking of vacuum gasoil (VGO). The average length of a sulfide active component layer shrinks as the amount of Mo increases and the amount of W in the catalyst is reduced. XPS data indicate that the degree of sulfidation of tungsten in NiMoW trimetallic catalysts is lower than in NiW catalyst. Testing of the catalysts in hydrocracking of a straight-line VGO at 390–420°C, 16 MPa, a feedstock hourly space velocity (FHSV) of 0.71 h−1, and a H2: VGO ratio of 1200 L/L shows the activities of hydrodesulfurization, hydrodenitrogenation, hydrogenation, and hydrocracking grow along with the W: (W + Mo) ratio. When the process pressure is high and the amount of sulfur in the NiW feedstock is low, the catalysts have higher activity in the target reactions of VGO hydrocracking than NiMo catalyst.

Keywords

hydrocracking trimetallic catalyst amorphous aluminosilicate vacuum gasoil diesel fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Minderhoud, J.K., van Veen, J.A.R., and Hagan, A.P., in Hydrotreatment and Hydrocracking of Oil Fractions, Delmon, B., Froment, G.F., and Grange, P., Eds., Amsterdam: Elsevier Science, 1999, pp. 3–30.Google Scholar
  2. 2.
    Ward, J.W., Fuel Process. Technol., 1993, vol. 35, nos. 1–2, pp. 55–85.CrossRefGoogle Scholar
  3. 3.
    Yasuda, H., Higo, M., Yoshitomi, S., Sato, T., Imamura, M., Matsubayashi, H., Shimada, H., Nishijima, A., and Yoshimura, Y., Catal. Today, 1997, vol. 39, nos. 1–2, pp. 77–87.CrossRefGoogle Scholar
  4. 4.
    Halachev, T., Nava, R., and Dimitrov, L., Appl. Catal., A, 1998, vol. 169, no. 1, pp. 111–117.CrossRefGoogle Scholar
  5. 5.
    Ali, M.A., Tatsumi, T., and Masuda, T., Appl. Catal., A, 2002, vol. 233, nos. 1–2, pp. 77–90.CrossRefGoogle Scholar
  6. 6.
    Kabe, T., Aoyama, Y., Wang, D., Ishihara, A., Qian, W., Hosoya, M., and Zhang, Q., Appl. Catal., A, 2001, vol. 209, nos. 1–2, pp. 237–247.CrossRefGoogle Scholar
  7. 7.
    Silva Rodrigo, R., Calderón-Salas, C., Melo-Banda, J.A., Domínguez, J.M., and Vázquez-Rodríguez, A., Catal. Today, 2004, vol. 98, nos. 1–2, pp. 123–129.CrossRefGoogle Scholar
  8. 8.
    Thomazeau, C., Geantet, C., Lacroix, M., Danot, M., Harlé, V., and Raybaud, P., Appl. Catal., A, 2007, vol. 322, pp. 92–97.CrossRefGoogle Scholar
  9. 9.
    Mendoza-Nieto, J.A., Vera-Vallejo, O., Escobar-Alarcón, L., Solís-Casados, D., and Klimova, T., Fuel, 2013, vol. 110, pp. 268–277.CrossRefGoogle Scholar
  10. 10.
    Cervantes-Gaxiola, M.E., Arroyo-Albiter, M., Pérez-Larios, A., Balbuena, P.B., and Espino-Valencia, J., Fuel, 2013, vol. 113, pp. 733–743.CrossRefGoogle Scholar
  11. 11.
    Van Haandel, L., Bremmer, M., Kooyman, P.J., van Veen, J.A.R., Weber, T., and 、Hensen, E.J.M., ACS Catal., 2015, vol. 5, no. 12, pp. 7276–7287.CrossRefGoogle Scholar
  12. 12.
    Absi-Halabi, M., Stanislaus, A., and Al-Dolama, K., Fuel, 1998, vol. 77, no. 7, pp. 787–790.CrossRefGoogle Scholar
  13. 13.
    US Patent 6399530, 2002.Google Scholar
  14. 14.
    Ivanova, A.S., Korneeva, E.V., Bukhtiyarova, G.A., Nuzhdin, A.L., Budneva, A.A., Prosvirin, I.P., Zaikovskii, V.I., and Noskov, A.S., Kinet. Catal., 2011, vol. 52, no. 3, pp. 446–458.CrossRefGoogle Scholar
  15. 15.
    Scott, C.E., Perez-Zurita, M.J., Carbognani, L.A., Molero, H., Vitale, G., Guzmán, H.J., and Pereira- Almao, P., Catal. Today, 2015, vol. 250, pp. 21–27.CrossRefGoogle Scholar
  16. 16.
    Zhang, M.-H., Fan, J.-Y., Chi, K., Duan, A.-J., Zhao, Z., Meng, X.-L., and Zhang, H.-L., Fuel Process. Technol., 2017, vol. 156, pp. 446–453.CrossRefGoogle Scholar
  17. 17.
    Wang, C., Wang, D., Wu, Z., Wang, Z., Tang, C., and Zhou, P., Appl. Catal., A, 2014, vol. 476, pp. 61–67.CrossRefGoogle Scholar
  18. 18.
    Rodríguez-Castellón, E., Jiménez-López, A., and Eliche- Quesada, D., Fuel, 2008, vol. 87, no. 7, pp. 1195–1206.CrossRefGoogle Scholar
  19. 19.
    Shpak, A.P., Korduban, A.M., Medvedskij, M.M., and Kandyba, V.O., J. Electron Spectrosc. Relat. Phenom., 2007, vols. 156–158, pp. 172–175.CrossRefGoogle Scholar
  20. 20.
    Yi, Y., Williams, C.T., Glascock, M., Xiong, G., Lauterbach, J., and Liang, C., Mater. Res. Bull., 2014, vol. 56, pp. 54–64.CrossRefGoogle Scholar
  21. 21.
    Eijsbouts, S., Appl. Catal., A, 1997, vol. 158, nos. 1–2, pp. 53–92.CrossRefGoogle Scholar
  22. 22.
    Eijsbouts, S., van den Oetelaar, L.C.A., and van Puijenbroek, R.R., J. Catal., 2005, vol. 229, no. 2, pp. 352–364.CrossRefGoogle Scholar
  23. 23.
    Dufresne, P., Bigeard, P.H., and Billon, A., Catal. Today, 1987, vol. 1, no. 4, pp. 367–384.CrossRefGoogle Scholar
  24. 24.
    Pereyma, V.Yu., Dik, P.P., Klimov, O.V., Budukva, S.V., Leonova, K.A., and Noskov, A.S., Russ. J. Appl. Chem., 2015, vol. 88, no. 12, pp. 1969–1975.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. P. Dik
    • 1
  • V. Yu. Pereima
    • 1
  • K. A. Nadeina
    • 1
  • M. O. Kazakov
    • 1
  • O. V. Klimov
    • 1
  • E. Yu. Gerasimov
    • 1
  • I. P. Prosvirin
    • 1
  • A. S. Noskov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations