Skip to main content
Log in

Methane pyrolysis on deposited resistive MeO x /carborundum catalysts, where MeO x is MgO, CaO, MgO/Al2O3, MgO/ZrO2, CaO/Al2O3, and CaO/ZrO2

  • General Problems of Catalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Thermostable oxide catalysts (Al2O3, ZrO2, MgO, and CaO) deposited onto a resistive support (carborundum) are investigated for oxygen-free methane pyrolysis. Adding MgO, ZrO2, and Al2O3 to pure carborundum considerably improves methane conversion and selectivity toward acetylene. In contrast, the deposition of СаO reduces the total activity of deposited catalysts. The maximum selectivity toward acetylene (23.6%) is achieved on MgO/SiC catalyst with methane conversion of 68% at T = 1290°C. Examination of the MgO/SiC sample shows that the catalyst retains its catalytic characteristics without decomposition (methane conversion, ≈69%; selectivity toward acetylene, ≈22%) for more than 4 h of operating in methane pyrolysis (15% СН4 in nitrogen) at a temperature of 1300°С as a result of there being no carbon corrosion of the carborundum resistive support, in comparison to the metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Knizhnikov, A.Yu. and Pusenkova, N.N., Problemy i perspektivy ispol’zovaniya neftyanogo poputnogo gaza v Rossii (Problems and Prospects of the Use of Associated Petroleum Gas in Russia), Moscow: WWF Rossii & IMEMO RAN, 2009.

    Google Scholar 

  2. Sinev, M.Yu., Reactions of free radicals in the catalytic oxidation processes of lower alkanes, Doctoral (Chem.) Dissertation, Moscow: Inst. Chem. Phys., Russ. Acad. Sci., 2011.

    Google Scholar 

  3. Holmen, A., Olsvik, O., and Rokstad, O.A., Fuel Process. Technol., 1995, vol. 42, nos. 2–3, pp. 249–267.

    Article  CAS  Google Scholar 

  4. Holmen, A., Catal. Today, 2009, vol. 142, nos. 1–2, pp. 2–8.

    Article  CAS  Google Scholar 

  5. Holmen, A., Rokstad, O.A., and Solbakken, A., Ind. Eng. Chem. Proc. Des. Dev., 1976, vol. 15, no. 3, pp. 439–444.

    Article  CAS  Google Scholar 

  6. Kharlamov, V.V., Alipov, N.E., and Konovalov, N.I., Okislitel’nyi piroliz metana do atsetilena (Oxidative Pyrolysis of Methane to Acetylene), Moscow: Khimiya, 2003.

    Google Scholar 

  7. Gattis, S.C., Peterson, E.R, and Johnson, M.M. The ÉCLAIRS process for converting natural gas to hydrocarbon liquids. http://www.adktroutguide.com/files/Acetylene_to_Gasoline_Synfuels_.pdf. Cited September 8, 2016.

  8. Arutyunov, V.S. and Magomedov, R.N., Russ. Chem. Rev., 2012, vol. 81, no. 9, pp. 790–822.

    Article  Google Scholar 

  9. Slovetskii, D.I., Plazmokhimicheskaya pererabotka uglevodorodov: sovremennoe sostoyanie i perspektivy (Plasmochenical Conversion of Hydrocarbons: State of the Art and Prospects), Moscow: Topchiev Inst. Petrochem. Synth. Russ Acad. Sci., 2011.

    Google Scholar 

  10. Fincke, J.R., Anderson, R.P., Hyde, T., Detering, B.A., Wright, R., Bewley, R.L., Haggard, D.C., and Swank, W.D., Plasma Chem. Plasma Process., 2002, vol. 22, no. 1, pp. 105–136.

    Article  CAS  Google Scholar 

  11. Fincke, J.R., Anderson, R.P., Hyde, T., Wright, R., Bewley, R., Haggard, D.C., and Swank, W.D., Thermal Conversion of Methane to Acetylene. Final Report INEEL/EXT-99-01378, Idaho National Engineering and Environmental Laboratory, 2000. https://digital.librarYunt.edu/ark:/67531/metadc891227/m1/2/. Cited October 8, 2017.

    Book  Google Scholar 

  12. Sun, Q., Tang, Y., and Gavalas, G.R., Energy Fuels, 2000, vol. 14, no. 2, pp. C. 490–494.

    Article  CAS  Google Scholar 

  13. Shaikhutdinov, S.K., Avdeeva, L.B., Goncharova, O.V., Kochubey, D.I., Novgorodov, B.N., and Plyasova, L.M., Appl. Catal., A, 1995, vol. 126, no. 1, pp. 125–139.

    Article  CAS  Google Scholar 

  14. Sekine, I. and Fudzhimoto, K., Kinet. Katal., 1999, no. 3, pp. 327–333.

    Google Scholar 

  15. Quiceno, R., Pérez-Ramírez, J., Warnatz, J., and Deutschmann, O., Appl. Catal., A, 2006, vol. 303, no. 2, pp. 166–176.

    Article  CAS  Google Scholar 

  16. Porsin, A.V., Kulikov, A.V., Amosov, Yu.I., Rogozhnikov, V.N., and Noskov, A.S., Theor. Found. Chem. Eng., 2014, vol. 48, no. 4, pp. 397–403.

    Article  CAS  Google Scholar 

  17. Sigaeva, S.S., Likholobov, V.A., and Tsyrul’nikov, P.G., Kinet. Catal., 2013, vol. 54, no. 2, pp. 199–206.

    Article  CAS  Google Scholar 

  18. Sigaeva, S.S., Slepterev, A.A., Temerev, V.L., and Tsyrul’nikov, P.G., Chem. Sustainable Dev., 2013, vol. 21, no. 1, pp. 83–90.

    Google Scholar 

  19. Sigaeva, S.S., Temerev, V.L., Tsyrul’nikov, P.G., and Borisov, V.A., Catal. Ind., 2015, vol. 7, no. 3, pp. 171–174.

    Article  Google Scholar 

  20. Borisov, V.A., Sigaeva, S.S., Tsyrul’nikov, P.G., Trenikhin, M.V., Leont’eva, N.N., Slepterev, A.A., Kan, V.E., and Biryukov, M.Yu., Kinet. Catal., 2014, vol. 55, no. 3, pp. 319–326.

    Article  CAS  Google Scholar 

  21. Sigaeva, S.S., Temerev, V.L., Kuznetsova, N.V., and Tsyrul’nikov, P.G., Catal. Ind., 2017, vol. 9, no. 3, pp. 181–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sigaeva.

Additional information

Original Russian Text © S.S. Sigaeva, V.L. Temerev, N.V. Kuznetsova, P.G. Tsyrul’nikov, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigaeva, S.S., Temerev, V.L., Kuznetsova, N.V. et al. Methane pyrolysis on deposited resistive MeO x /carborundum catalysts, where MeO x is MgO, CaO, MgO/Al2O3, MgO/ZrO2, CaO/Al2O3, and CaO/ZrO2 . Catal. Ind. 9, 277–282 (2017). https://doi.org/10.1134/S2070050417040080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050417040080

Keywords

Navigation