Skip to main content
Log in

New mixed perovskite-type Gd2–x Sr1+x Fe2O7 catalysts for dry reforming of methane, and production of light olefins

  • Domestic Catalysts
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The catalytic properties of complex perovskite-type gadolinium and strontium oxides in carbon dioxide reforming of methane and the production of gaseous olefins by carbon monoxide hydrogenation have been studied. Samples of Gd2SrFe2O7 and Gd2–x Sr1+x Fe2O7 (х = 0.1; 0.2; 0.3; and 0.4) have been obtained by the sol–gel method and ceramic technology, and have been characterized by means of X-ray diffraction, scanning electron microscopy, photon correlation spectroscopy, Mössbauer spectroscopy, and N2 adsorption–desorption analysis. It has been shown that the sol–gel method allows us to produce samples with better catalytic characteristics than ceramic systems. The nonisovalent substitution of Gd3+ for Sr2+ distorts the structure of complex oxide, resulting in the emergence of the heterovalent state of iron atoms (Fe3+ and Fe4+) reflected in the values of reactant conversion and selectivity for the target products. A sample of Gd2–x Sr1+x Fe2O7 with х = 0.3 displays the highest catalytic activity in dry reforming of methane reforming, along with the highest selectivity for unsaturated hydrocarbons (ethylene and propylene) in hydrogenation of carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood, D., Oil Gas J., 2007, vol. 12, pp. 20–24.

    Google Scholar 

  2. Khazova, T., Neftegaz, 2013, no. 4, pp. 34–35.

    Google Scholar 

  3. Pogosyan, N.M., Synthesis of olefins via cooxidation of light hydrocarbons, Cand. Sci. (Chem.) Dissertation, Moscow Gubkin Gos. Univ. Nefti Gaza, 2016.

    Google Scholar 

  4. Zhao, K., He, F., Huang, Z., Wei, G., Zheng, A., Li, H., and Zhao, Z., Appl. Energy, 2016, vol. 168, pp. 193–203.

    Article  CAS  Google Scholar 

  5. Salker, A.V. and Gurav, S.M., J. Mater. Sci., 2000, vol. 35, no. 18, pp. 4713–4719.

    Article  CAS  Google Scholar 

  6. Mamedov, A.Kh., Mirzabekov, S.R., Shiryaev, Sh.A., and Shapkin, D.P., Neftekhimiya, 1990, vol. 30, pp. 492–496.

    Google Scholar 

  7. Mirzabekova, S.R., Mamedov, A.Kh., and Aliev, V.S., Neftekhimiya, 1993, vol. 33, pp. 62–70.

    Google Scholar 

  8. Mirzabekova, S.R., Mamedov, A.Kh., and Krylov, O.V., Kinet. Katal., 1993, vol. 34, no. 3, pp. 522–528.

    CAS  Google Scholar 

  9. Touahra, F., Rabahi, A., Chebout, R., Boudjemaa, A., Lerari, D., Sehailia, M., Halliche, D., and Bachari, K., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 2477–2486.

    Article  CAS  Google Scholar 

  10. Radlik, M., Adamowska-Teyssier, M., Krzton, A., Koziel, K., Krajewski, W., and Turek, W., Da Costa, P., C. R. Chim., 2015, vol. 18, no. 11, pp. 1242–1249.

    Article  CAS  Google Scholar 

  11. De Caprariis, B., De Filippis, P., Palma, V., Petrullo, A., Ricca, A., Ruocco, C., and Scarsella, M., Appl. Catal., A, 2016, vol. 517, pp. 47–55.

    Article  Google Scholar 

  12. Drif, A., Bion, N., Brahmi, R., Ojala, S., Pirault-Roy, L., Turpeinen, E., Seelam, P.K., Keiski, R.L., and Epron, F., Appl. Catal., A, 2015, vol. 504, pp. 576–584.

    Article  CAS  Google Scholar 

  13. Shlyakhtin, O.A., Mazo, G.N., Kaluzhskikh, M.S., Komissarenko, D.A., Loktev, A.S., and Dedov, A.G., Mater. Lett., 2012, vol. 75, pp. 20–22.

    Article  CAS  Google Scholar 

  14. Dedov, A.G., Loktev, A.C., Mazo, G.N., Leonova, L.S., Komissarenko, D.A, Mamaev, Yu.A., Kaluzhskikh, M.S., Shlyakhtin, O.A., Kuznetsova, E.P., Kartasheva, M.N., and Moiseev, I.I., Dokl. Phys. Chem., 2011, vol. 441, no. 2, pp. 233–236.

    Article  CAS  Google Scholar 

  15. Zagaynov, I.V., Loktev, A.S., Arashanova, A.L., Ivanov, V.K., Dedov, A.G., and Moiseev, I.I., Chem. Eng. J., 2016, vol. 290, pp. 193–200.

    Article  CAS  Google Scholar 

  16. Dedov, A.G., Loktev, A.S., Moiseev, I.I., Aboukais, A., Lamonier, J.-F., and Filimonov, I.N., Appl. Catal., A, 2003, vol. 245, no. 2, pp. 209–220.

    Article  CAS  Google Scholar 

  17. Dedov, A.G., Loktev, A.S., Men’shchikov, V.A., Kartasheva, M.N., Parkhomenko, K.V., and Moiseev, I.I., Dokl. Chem., 2001, vol. 380, no. 4, pp. 301–304.

    Article  Google Scholar 

  18. Dedov, A.G., Loktev, A.S., Nipan, G.D., Dorokhov, S.N., Golikov, S.D., Spesivtsev, N.A., and Moiseev, I.I., Pet. Chem., 2015, vol. 55, no. 2, pp. 163–168.

    Article  CAS  Google Scholar 

  19. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Dedov, A.G., and Moiseev, I.I., Dokl. Phys. Chem., 2013, vol. 448, no. 2, pp. 19–22.

    Article  CAS  Google Scholar 

  20. Li, J., Pan, X., and Bao, X., Chin. J. Catal., 2015, vol. 36, no. 7, pp. 1131–1135.

    Article  Google Scholar 

  21. Gao, X., Zhang, J., Chen, N., Ma, Q., Fan, S., Zhao, T., and Tsubaki, N., Chin. J. Catal., 2016, vol. 37, no. 4, pp. 510–516.

    Article  CAS  Google Scholar 

  22. Zvereva, I.A., Otrepina, I.V., Semenov, V.G., Tugova, E.A., Popova, V.F., and Gusarov, V.V., Russ. J. Gen. Chem., 2007, vol. 77, no. 6, pp. 973–978.

    Article  CAS  Google Scholar 

  23. Otrepina, I.V., Volodin, V.V., Zvereva, I.A., and Liu, J.-Sh., Glass Phys. Chem., 2009, vol. 35, no. 4, pp. 423–430.

    Article  CAS  Google Scholar 

  24. Chislova, I.V., Matveeva, A.A., Volkova, A.V., and Zvereva, I.A., Glass Phys. Chem., 2011, vol. 37, no. 6, pp. 653–660.

    Article  CAS  Google Scholar 

  25. Shilova, A., Chislova, I., Panchuk, V., Semenov, V., and Zvereva, I., Solid State Phenom., 2013, vol. 194, pp. 116–119.

    Article  Google Scholar 

  26. Chislova, I.V., Phase formation processes, structure, and magnetic and catalytic properties of complex gadolinium and strontium ferrites Gd2–xSr1 + xFe2O7–a, Cand. Sci. (Chem.) Dissertation, St.Petersburg St. Peterb. State Univ., 2015.

    Google Scholar 

  27. Roginskii, S.Z., Yanovskii, M.I., and Bermand, A.D., Osnovy primeneniya khromatografii v katalize (Principles of the Application of Chromatography in Catalysis), Moscow Nauka, 1972.

    Google Scholar 

  28. Dementyeva, M.V., Sheshko, T.F., and Serov, Yu.M., Theor. Exp. Chem., 2013, vol. 49, no. 1, pp. 46–51.

    Article  CAS  Google Scholar 

  29. Rajadurai, S., Carberry, J.J., Li., B., and Alcock, C.B., J. Catal., 1991, vol. 131, no. 2, pp. 582–589.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Sheshko.

Additional information

Original Russian Text © T.F. Sheshko, T.A. Kryuchkova, Yu.M. Serov, I.V. Chislova, I.A. Zvereva, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshko, T.F., Kryuchkova, T.A., Serov, Y.M. et al. New mixed perovskite-type Gd2–x Sr1+x Fe2O7 catalysts for dry reforming of methane, and production of light olefins. Catal. Ind. 9, 162–169 (2017). https://doi.org/10.1134/S207005041702009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005041702009X

Keywords

Navigation