Catalysis in Industry

, Volume 9, Issue 2, pp 162–169 | Cite as

New mixed perovskite-type Gd2–x Sr1+x Fe2O7 catalysts for dry reforming of methane, and production of light olefins

  • T. F. Sheshko
  • T. A. Kryuchkova
  • Yu. M. Serov
  • I. V. Chislova
  • I. A. Zvereva
Domestic Catalysts

Abstract

The catalytic properties of complex perovskite-type gadolinium and strontium oxides in carbon dioxide reforming of methane and the production of gaseous olefins by carbon monoxide hydrogenation have been studied. Samples of Gd2SrFe2O7 and Gd2–x Sr1+x Fe2O7 (х = 0.1; 0.2; 0.3; and 0.4) have been obtained by the sol–gel method and ceramic technology, and have been characterized by means of X-ray diffraction, scanning electron microscopy, photon correlation spectroscopy, Mössbauer spectroscopy, and N2 adsorption–desorption analysis. It has been shown that the sol–gel method allows us to produce samples with better catalytic characteristics than ceramic systems. The nonisovalent substitution of Gd3+ for Sr2+ distorts the structure of complex oxide, resulting in the emergence of the heterovalent state of iron atoms (Fe3+ and Fe4+) reflected in the values of reactant conversion and selectivity for the target products. A sample of Gd2–x Sr1+x Fe2O7 with х = 0.3 displays the highest catalytic activity in dry reforming of methane reforming, along with the highest selectivity for unsaturated hydrocarbons (ethylene and propylene) in hydrogenation of carbon monoxide.

Keywords

methane carbon dioxide synthesis gas olefins ferrites perovskites dry reforming of methane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wood, D., Oil Gas J., 2007, vol. 12, pp. 20–24.Google Scholar
  2. 2.
    Khazova, T., Neftegaz, 2013, no. 4, pp. 34–35.Google Scholar
  3. 3.
    Pogosyan, N.M., Synthesis of olefins via cooxidation of light hydrocarbons, Cand. Sci. (Chem.) Dissertation, Moscow Gubkin Gos. Univ. Nefti Gaza, 2016.Google Scholar
  4. 4.
    Zhao, K., He, F., Huang, Z., Wei, G., Zheng, A., Li, H., and Zhao, Z., Appl. Energy, 2016, vol. 168, pp. 193–203.CrossRefGoogle Scholar
  5. 5.
    Salker, A.V. and Gurav, S.M., J. Mater. Sci., 2000, vol. 35, no. 18, pp. 4713–4719.CrossRefGoogle Scholar
  6. 6.
    Mamedov, A.Kh., Mirzabekov, S.R., Shiryaev, Sh.A., and Shapkin, D.P., Neftekhimiya, 1990, vol. 30, pp. 492–496.Google Scholar
  7. 7.
    Mirzabekova, S.R., Mamedov, A.Kh., and Aliev, V.S., Neftekhimiya, 1993, vol. 33, pp. 62–70.Google Scholar
  8. 8.
    Mirzabekova, S.R., Mamedov, A.Kh., and Krylov, O.V., Kinet. Katal., 1993, vol. 34, no. 3, pp. 522–528.Google Scholar
  9. 9.
    Touahra, F., Rabahi, A., Chebout, R., Boudjemaa, A., Lerari, D., Sehailia, M., Halliche, D., and Bachari, K., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 2477–2486.CrossRefGoogle Scholar
  10. 10.
    Radlik, M., Adamowska-Teyssier, M., Krzton, A., Koziel, K., Krajewski, W., and Turek, W., Da Costa, P., C. R. Chim., 2015, vol. 18, no. 11, pp. 1242–1249.CrossRefGoogle Scholar
  11. 11.
    De Caprariis, B., De Filippis, P., Palma, V., Petrullo, A., Ricca, A., Ruocco, C., and Scarsella, M., Appl. Catal., A, 2016, vol. 517, pp. 47–55.CrossRefGoogle Scholar
  12. 12.
    Drif, A., Bion, N., Brahmi, R., Ojala, S., Pirault-Roy, L., Turpeinen, E., Seelam, P.K., Keiski, R.L., and Epron, F., Appl. Catal., A, 2015, vol. 504, pp. 576–584.CrossRefGoogle Scholar
  13. 13.
    Shlyakhtin, O.A., Mazo, G.N., Kaluzhskikh, M.S., Komissarenko, D.A., Loktev, A.S., and Dedov, A.G., Mater. Lett., 2012, vol. 75, pp. 20–22.CrossRefGoogle Scholar
  14. 14.
    Dedov, A.G., Loktev, A.C., Mazo, G.N., Leonova, L.S., Komissarenko, D.A, Mamaev, Yu.A., Kaluzhskikh, M.S., Shlyakhtin, O.A., Kuznetsova, E.P., Kartasheva, M.N., and Moiseev, I.I., Dokl. Phys. Chem., 2011, vol. 441, no. 2, pp. 233–236.CrossRefGoogle Scholar
  15. 15.
    Zagaynov, I.V., Loktev, A.S., Arashanova, A.L., Ivanov, V.K., Dedov, A.G., and Moiseev, I.I., Chem. Eng. J., 2016, vol. 290, pp. 193–200.CrossRefGoogle Scholar
  16. 16.
    Dedov, A.G., Loktev, A.S., Moiseev, I.I., Aboukais, A., Lamonier, J.-F., and Filimonov, I.N., Appl. Catal., A, 2003, vol. 245, no. 2, pp. 209–220.CrossRefGoogle Scholar
  17. 17.
    Dedov, A.G., Loktev, A.S., Men’shchikov, V.A., Kartasheva, M.N., Parkhomenko, K.V., and Moiseev, I.I., Dokl. Chem., 2001, vol. 380, no. 4, pp. 301–304.CrossRefGoogle Scholar
  18. 18.
    Dedov, A.G., Loktev, A.S., Nipan, G.D., Dorokhov, S.N., Golikov, S.D., Spesivtsev, N.A., and Moiseev, I.I., Pet. Chem., 2015, vol. 55, no. 2, pp. 163–168.CrossRefGoogle Scholar
  19. 19.
    Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Dedov, A.G., and Moiseev, I.I., Dokl. Phys. Chem., 2013, vol. 448, no. 2, pp. 19–22.CrossRefGoogle Scholar
  20. 20.
    Li, J., Pan, X., and Bao, X., Chin. J. Catal., 2015, vol. 36, no. 7, pp. 1131–1135.CrossRefGoogle Scholar
  21. 21.
    Gao, X., Zhang, J., Chen, N., Ma, Q., Fan, S., Zhao, T., and Tsubaki, N., Chin. J. Catal., 2016, vol. 37, no. 4, pp. 510–516.CrossRefGoogle Scholar
  22. 22.
    Zvereva, I.A., Otrepina, I.V., Semenov, V.G., Tugova, E.A., Popova, V.F., and Gusarov, V.V., Russ. J. Gen. Chem., 2007, vol. 77, no. 6, pp. 973–978.CrossRefGoogle Scholar
  23. 23.
    Otrepina, I.V., Volodin, V.V., Zvereva, I.A., and Liu, J.-Sh., Glass Phys. Chem., 2009, vol. 35, no. 4, pp. 423–430.CrossRefGoogle Scholar
  24. 24.
    Chislova, I.V., Matveeva, A.A., Volkova, A.V., and Zvereva, I.A., Glass Phys. Chem., 2011, vol. 37, no. 6, pp. 653–660.CrossRefGoogle Scholar
  25. 25.
    Shilova, A., Chislova, I., Panchuk, V., Semenov, V., and Zvereva, I., Solid State Phenom., 2013, vol. 194, pp. 116–119.CrossRefGoogle Scholar
  26. 26.
    Chislova, I.V., Phase formation processes, structure, and magnetic and catalytic properties of complex gadolinium and strontium ferrites Gd2–xSr1 + xFe2O7–a, Cand. Sci. (Chem.) Dissertation, St.Petersburg St. Peterb. State Univ., 2015.Google Scholar
  27. 27.
    Roginskii, S.Z., Yanovskii, M.I., and Bermand, A.D., Osnovy primeneniya khromatografii v katalize (Principles of the Application of Chromatography in Catalysis), Moscow Nauka, 1972.Google Scholar
  28. 28.
    Dementyeva, M.V., Sheshko, T.F., and Serov, Yu.M., Theor. Exp. Chem., 2013, vol. 49, no. 1, pp. 46–51.CrossRefGoogle Scholar
  29. 29.
    Rajadurai, S., Carberry, J.J., Li., B., and Alcock, C.B., J. Catal., 1991, vol. 131, no. 2, pp. 582–589.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. F. Sheshko
    • 1
  • T. A. Kryuchkova
    • 1
  • Yu. M. Serov
    • 1
  • I. V. Chislova
    • 2
  • I. A. Zvereva
    • 2
  1. 1.RUDN UniversityMoscowRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations