Catalysis in Industry

, Volume 9, Issue 2, pp 170–179 | Cite as

Studying the thermal conversion of acetone lignin in supercritical butanol in the presence of NiCuMo/SiO2 catalysts

  • V. I. Sharypov
  • B. N. Kusnetsov
  • V. A. Yakovlev
  • N. G. Beregovtsova
  • S. V. Baryshnikov


Existing and emerging technologies for the chemical processing of wood are mainly aimed at transforming its cellulose component into target products. In these processes, lignin is produced on a large scale as a waste product, but there are no advanced ways of processing it. This work investigates the effect NiCuМо/SiO2 catalysts have on the thermal transformation of acetone lignin in supercritical butanol at temperatures of 280, 300, and 350°C. The resulting liquid products are studied via gas–liquid chromatography mass spectrometry, and 13С NMR spectroscopy. It is found that butanol undergoes almost no thermochemical conversions at temperatures below 300°C. Catalysts raise its level of conversion to 36–40 wt %. Under the effect of NiCuМо/SiO2 catalysts, the yield of hexane-soluble products of acetone lignin thermal conversion at 300°C increases by a factor of 2.4, while the yield of solid residue falls by approximately a factor of 3.3. Catalysts reduce the relative content of methoxyphenols in hexane-soluble products: the content of syringol in particular falls by a factor of 14. According to 13С NMR spectroscopy, the catalytic transformation of acetone lignin to liquid acetone-soluble products is accompanied by the breaking of β–О–4 chemical bonds between the structural fragments of lignin and a reduction in the content of methoxyl groups, primarily in the syringyl structural units of the resulting products.


acetone lignin butanol conversion catalysts liquid products analysis chromatography mass spectrometry 13С NMR spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biofuels: Alternative Feedstocks and Conversion Processes, Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.-G., and Gnansounou, E., Eds., Oxford Academic, 2011.Google Scholar
  2. 2.
    Nelson, V., Introduction to Renewable Energy, Boca Raton, FL CRC, 2011.Google Scholar
  3. 3.
    Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., and Weckhuysen, B.M., Chem. Rev., 2010, vol. 110, no. 6, pp. 3552–3599.CrossRefGoogle Scholar
  4. 4.
    Vázquez, G., Rodríguez-Bona, C., Freire, S., González-Álvarez, J., and Antorrena, G., Bioresour. Technol., 1999, vol. 70, no. 2, pp. 209–214.CrossRefGoogle Scholar
  5. 5.
    Park, Y., Doherty, W.O.S., and Halley, P.J., Ind. Crops Prod., 2008, vol. 27, no. 2, pp. 163–167.CrossRefGoogle Scholar
  6. 6.
    Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., and Belgacem, M.N., React. Funct. Polym., 2011, vol. 71, no. 8, pp. 863–869.CrossRefGoogle Scholar
  7. 7.
    Kim, J.-Y., Park, J., Hwang, H., Kim, J.K., Song, I.K., and Choi, J.W., J. Anal. Appl. Pyrolysis, 2015, vol. 113, pp. 99–106.CrossRefGoogle Scholar
  8. 8.
    Huang, X., Korányi, T.I., Boot, M.D., and Hensen, E.J.M., ChemSusChem, 2014, vol. 7, no. 8, pp. 2276–2288.CrossRefGoogle Scholar
  9. 9.
    Kuznetsov, B.N., Sharypov, V.I., Chesnokov, N.V., Beregovtsova, N.G., Baryshnikov, S.V., Lavrenov, A.V., Vosmerikov, A.V., and Agabekov, V.E. Kinet. Catal., 2015, vol. 56, no. 4, pp. 434–441.Google Scholar
  10. 10.
    Kim, J.-Y., Park, J., Kim, U.-J., and Choi, J.W., Energy Fuels, 2015, vol. 29, no. 8, pp. 5154–5163.CrossRefGoogle Scholar
  11. 11.
    Hu, J., Shen, D., Wu, S., Zhang, H., and Xiao, R., Energy Fuels, 2014, vol. 28, no. 7, pp. 4260–4266.CrossRefGoogle Scholar
  12. 12.
    Warner, G., Hansen, T.S., Riisager, A., Beach, E.S., Barta, K., and Anastas, P.T., Bioresour. Technol., 2014, vol. 161, pp. 78–83.CrossRefGoogle Scholar
  13. 13.
    Sharypov, V.I., Kuznetsov, B.N., Yakovlev, V.A., Beregovtsova, N.G., Baryshnikov, S.V., Djakovitch, L., and Pinel, C., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 3, pp. 465–475.CrossRefGoogle Scholar
  14. 14.
    Kleinert, M. and Barth, T., Energy Fuels, 2008, vol. 22, no. 2, pp. 1371–1379.CrossRefGoogle Scholar
  15. 15.
    Macala, G.S., Matson, T.D., Johnson, C.L., Lewis, R.S., Iretskii, A.V., and Ford, P.C., ChemSusChem, 2009, vol. 2, no. 3, pp. 215–217.CrossRefGoogle Scholar
  16. 16.
    Heitner, C., Dimmel, D.R., and Schmidt, J.A., Lignin and Lignans: Advances in Chemistry, Boca Raton, FL CRC, 2010.CrossRefGoogle Scholar
  17. 17.
    Huijgen, W.J.J., Reith, J.H., and Uil, H., Ind. Eng. Chem. Res., 2010, vol. 49, no. 20, pp. 10132–10140.CrossRefGoogle Scholar
  18. 18.
    Zhao, X., Cheng, K., and Liu, D., Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 5, pp. 815–819.CrossRefGoogle Scholar
  19. 19.
    Ennaert, T., van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., and Sels, B.F., Chem. Soc. Rev., 2016, vol. 45, no. 3, pp. 584–611.CrossRefGoogle Scholar
  20. 20.
    Wang, H., Tucker, M., and Ji, Y., J. Appl. Chem., 2013, vol. 2013. doi 10.1155/2013/838645Google Scholar
  21. 21.
    Sturgeon, M.R., O’Brien, M.H., Ciesielski, P.N., Katahira, R., Kruger, J.S., Chmely, S.C., Hamlin, J., Lawrence, K., Hunsinger, G.B., Foust, T.D., Baldwin, R.M., Biddy, M.J., and Beckham, G.T., Green Chem., 2014, vol. 16, no. 2, pp. 824–835.CrossRefGoogle Scholar
  22. 22.
    Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., and Xu, J., Energy Environ. Sci., 2013, vol. 6, no. 3, pp. 994–1007.CrossRefGoogle Scholar
  23. 23.
    Ma, R., Hao, W., Ma, X., Tian, Y., and Li, Y., Angew. Chem., Int. Ed., 2014, vol. 53, no. 28, pp. 7310–7315.CrossRefGoogle Scholar
  24. 24.
    Ermakova, M.A. and Ermakov, D.Yu., Appl. Catal., A, 2003, vol. 245, no. 2, pp. 277–288.CrossRefGoogle Scholar
  25. 25.
    Bykova, M.V., Ermakov, D.Yu., Khromova, S.A., Smirnov, A.A., Lebedev, M.Yu., and Yakovlev, V.A., Catal. Today, 2014, vols. 220–222, pp. 21–31.Google Scholar
  26. 26.
    Quesada-Medina, J., López-Cremades, F.J., and Olivares-Carrillo, P., Bioresour. Technol., 2010, vol. 101, no. 21, pp. 8252–8260.CrossRefGoogle Scholar
  27. 27.
    Ralph, J. and Hatfield, R.D., J. Agric. Food Chem., 1991, vol. 3, no. 8, pp. 1426–1437.CrossRefGoogle Scholar
  28. 28.
    Kjällstrand, J., Ramnäs, O., and Petersson, G., J. Chromatogr. A, 1998, vol. 824, no. 2, pp. 205–210.CrossRefGoogle Scholar
  29. 29.
    Yoshikawa, T., Shinohara, S., Yagi, T., Ryumon, N., Nakasaka, Y., Tago, T., and Masuda, T., Appl. Catal., B, 2014, vol. 146, pp. 289–297.CrossRefGoogle Scholar
  30. 30.
    Cheng, S., Wilks, C., Yuan, Z., Leitch, M., and Xu, C., Polym. Degrad. Stab., 2012, vol. 97, no. 6, pp. 839–848.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Sharypov
    • 1
  • B. N. Kusnetsov
    • 1
    • 2
  • V. A. Yakovlev
    • 3
  • N. G. Beregovtsova
    • 1
  • S. V. Baryshnikov
    • 1
  1. 1.Institute of Chemistry and Chemical Technology, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations