Catalysis in Industry

, Volume 9, Issue 2, pp 146–155 | Cite as

Inhibiting HDS and HYD reactions with quinoline on Co(Ni)–PMo(W)/Al2O3 catalysts: Effect of active phase composition on stability in the hydrotreatment of a model petroleum raw material

  • P. P. Minaev
  • A. S. Koklyukhin
  • K. I. Maslakov
  • P. A. Nikulshin
Catalysis in Petroleum Refining Industry


Со(Ni)–PMo(W)/Al2O3 catalysts are prepared using Keggin heteropoly acids H3PMo(W)12O40 and cobalt (nickel) citrate. The physicochemical properties of the catalysts are studied via low-temperature nitrogen adsorption, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Their catalytic properties are determined in the hydrotreatment of a model raw material containing dibenzothiophene, naphthalene, and different amounts of quinoline (up to 1000 ppm of nitrogen), and in the hydrotreatment of a straight-run diesel fraction and vacuum gas oil. The composition of Со(Ni)–PMo(W)/Al2O3 catalysts plays an important role in the hydrotreatment of a complex hydrocarbon raw material. Ni–PW/Al2O3 catalyst is more resistant to organonitrogen inhibitors than Ni(Co)–PMo/Al2O3 samples with more reactive active sites. Ni–PW/Al2O3 catalyst provides the greatest depth of conversion for sulfur- and nitrogen-containing compounds and polycyclic aromatic hydrocarbons in the hydrotreatment of vacuum gas oil.


hydrotreatment CoMoS NiMoS NiWS heteropolyanion diesel fuel vacuum gas oil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stanislaus, A., Marafi, A., and Rana, M.S., Catal. Today, 2010, vol. 153, nos. 1–2, pp. 1–68.CrossRefGoogle Scholar
  2. 2.
    Song, C., Catal. Today, 2003, vol. 86, nos. 1–4, pp. 211–263.CrossRefGoogle Scholar
  3. 3.
    Topsøe, H., Clausen, B.S., and Massoth, F.E., in Catalysis—Science and Technology, vol. 11: Hydrotreating Catalysis, Anderson, J.R., and Boudart, M., Eds., Berlin Springer, 1996.Google Scholar
  4. 4.
    Reinhoudt, H.R., Boons, C.H.M., van Langeveld, A.D., van Veen, J.A.R., Sie, S.T., and Moulijn, J.A., Appl. Catal., A, 2001, vol. 207, nos. 1–2, pp. 25–36.CrossRefGoogle Scholar
  5. 5.
    Spojakina, A., Palcheva, R., Jiratova, K., Tyuliev, G., and Petrov, L., Catal. Lett., 2005, vol. 104, no. 1, pp. 45–52.CrossRefGoogle Scholar
  6. 6.
    Mozhaev, A.V., Nikulshin, P.A., Pimerzin, A.A., Maslakov, K.I., and Pimerzin, A.A., Catal. Today, 2016, vol. 271, pp. 80–90.CrossRefGoogle Scholar
  7. 7.
    Nikulshin, P.A., Minaev, P.P., Mozhaev, A.V., Maslakov, K.I., Kulikova, M.S., and Pimerzin, A.A., Appl. Catal., B, 2015, vols. 176–177, pp. 374–384.CrossRefGoogle Scholar
  8. 8.
    Minaev, P.P., Nikulshin, P.A., Kulikova, M.S., Pimerzin, A.A., and Kogan, V.M., Appl. Catal., A, 2015, vol. 505, pp. 456–466.CrossRefGoogle Scholar
  9. 9.
    Nikulshin, P.A., Ishutenko, D.I., Mozhaev, A.A., Maslakov, K.I., and Pimerzin, A.A., J. Catal., 2014, vol. 312, pp. 152–169.CrossRefGoogle Scholar
  10. 10.
    Speight, J.G. The Chemistry and Technology of Petroleum, Boca Raton, FL CRC Press, 2006.Google Scholar
  11. 11.
    Halachev, T., Nava, R., and Dimitrov, L., Appl. Catal., A, 1998, vol. 169, no. 1, pp. 111–117.CrossRefGoogle Scholar
  12. 12.
    Knudsen, K.G., Cooper, B.H., and Topsøe, H., Appl. Catal., A, 1999, vol. 189, no. 2, pp. 205–215.CrossRefGoogle Scholar
  13. 13.
    Andari, M.K., Abu-Seedo, F., Stanislaus, A., and Qabazard, H.M., Fuel, 1996, vol. 75, no. 14, pp. 1664–1670.CrossRefGoogle Scholar
  14. 14.
    Sal’nikov, V.A., Nikul’shin, P.A., and Pimerzin, A.A., Pet. Chem., 2013, vol. 53, no. 4, pp. 233–244.CrossRefGoogle Scholar
  15. 15.
    Egorova, M. and Prins, R., Catal. Lett., 2004, vol. 92, no. 3, pp. 87–91.CrossRefGoogle Scholar
  16. 16.
    Beltramone, A.R., Crossley, S., Resasco, D.E., Alvarez, W.E., and Choudhary, T.V., Catal. Lett., 2008, vol. 123, nos. 3–4, pp. 181–185.CrossRefGoogle Scholar
  17. 17.
    Shih, S.S., Mizrahi, S., Green, L.A., and Sarli, M.S., Ind. Eng. Chem. Res., 1992, vol. 31, no. 4, pp. 1232–1235.CrossRefGoogle Scholar
  18. 18.
    Whitehurst, D.D., Isoda, T., and Mochida, I., Adv. Catal., 1998, vol. 42, pp. 345–471.Google Scholar
  19. 19.
    Oyama, T.S., J. Catal., 2003, vol. 216, nos. 1–2, pp. 343–352.CrossRefGoogle Scholar
  20. 20.
    Xiang, C.-E., Chai, Y.-M., Liu, Y.-Q., and Liu, C.-G., J. Fuel Chem. Technol., 2008, vol. 36, no. 6, pp. 684–690.CrossRefGoogle Scholar
  21. 21.
    Lio, K. and Ng, F.T.T., Catal. Today, 2010, vol. 149, nos. 1–2, pp. 28–34.CrossRefGoogle Scholar
  22. 22.
    Kabe, T., Ishihara, A., and Tajima, H., Ind. Eng. Chem. Res., 1992, vol. 31, no. 6, pp. 1577–1580.CrossRefGoogle Scholar
  23. 23.
    Macaud, M., Milenkovic, A., Schulz, E., Lemaire, M., and Vrinat, M., J. Catal., 2000, vol. 193, no. 2, pp. 255–263.CrossRefGoogle Scholar
  24. 24.
    Lio, Z., Zheng, Y., Wang, W., Zhang, Q., and Jia, L., Appl. Catal., A, 2008, vol. 339, no. 2, pp. 209–220.CrossRefGoogle Scholar
  25. 25.
    Rana, M.S., Navarro, R., and Leglise, J., Catal. Today, 2004, vol. 98, nos. 1–2, pp. 67–74.CrossRefGoogle Scholar
  26. 26.
    Logadóttir, A., Moses, P.G., Hinnemann, P., Topsøe, N.Y., Knudsen, K.G., Topsøe, H., and Nørskov, J.K., Catal. Today, 2006, vol. 111, nos. 1–2, pp. 44–51.CrossRefGoogle Scholar
  27. 27.
    Mizutani, H., Godo, H., Ohsaki, T., Kato, Y., Fujikawa, T., Saih, Y., Funamoto, T., and Segawa, K., Appl. Catal., A, 2005, vol. 295, no. 2, pp. 193–200.CrossRefGoogle Scholar
  28. 28.
    Egorova, M. and Prins, R., J. Catal., 2004, vol. 221, no. 1, pp. 11–19.CrossRefGoogle Scholar
  29. 29.
    Egorova, M. and Prins, R., J. Catal., 2004, vol. 224, no. 2, pp. 278–287.CrossRefGoogle Scholar
  30. 30.
    Laredo, G.C., Montesinos, A., and de los Reyes, J.A., Appl. Catal., A, 2004, vol. 265, no. 2, pp. 171–183.CrossRefGoogle Scholar
  31. 31.
    Koltai, T., Macaud, M., Guevara, A., Schulz, E., Lemaire, M., Bacaud, R., and Vrinat, M., Appl. Catal., A, 2002, vol. 231, nos. 1–2, pp. 253–261.CrossRefGoogle Scholar
  32. 32.
    Laredo, G.C.S., De los Reyes, J.A.H., Cano, J.L.D., and Castillo, J.J.M., Appl. Catal., A, 2001, vol. 207, nos. 1–2, pp. 103–112.CrossRefGoogle Scholar
  33. 33.
    Siryuk, A.G. and Zimina, K.I., Khim. Tekhnol. Topl. Masel, 1963, no. 2, pp. 52–56.Google Scholar
  34. 34.
    Eremina, Yu.V., Studying the specific features of the hydrodesulfonation and hydrogenation reactions of diesel fraction compounds over molybdenum-containing catalysts, Cand. Sci. (Chem.) Dissertation, Samara Samara State Tech. Univ., 2006.Google Scholar
  35. 35.
    Tayeb, K.B., Lamonier, C., Lancelot, C., Fournier, L., Bonduelle-Skrzypczak, A., and Bertoncini, F., Catal. Lett., 2014, vol. 144, no. 3, pp. 460–468.CrossRefGoogle Scholar
  36. 36.
    Tayeb, K.B., Lamonier, C., Lancelot, C., Fournier, L., Payen, E., Bonduelle, A., and Bertoncini, F., Catal. Today, 2010, vol. 150, no. 3–4, pp. 207–212.CrossRefGoogle Scholar
  37. 37.
    Zuo, D., Vrinat, M., Nie, H., Maugéc, F., Shi, Y., Lacroix, M., and Li., D., Catal. Today, 2004, vols. 93–95, pp. 751–760.CrossRefGoogle Scholar
  38. 38.
    Coulier, L., Kishan, G., van Veen, J.A.R., and Niemantsverdriet, J.W., J. Phys. Chem. B, 2002, vol. 106, no. 23, pp. 5897–5906.CrossRefGoogle Scholar
  39. 39.
    Mogica-Betancourt, J.C., López-Benítez, A., Montiel-López, J.R., Massin, L., Aouine, M., Vrinat, M., Berhault, G., and Guevara-Lara, A., J. Catal., 2014, vol. 313, pp. 9–23.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. P. Minaev
    • 1
  • A. S. Koklyukhin
    • 1
  • K. I. Maslakov
    • 2
  • P. A. Nikulshin
    • 1
  1. 1.Samara State Technical UniversitySamaraRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations