Advertisement

Catalysis in Industry

, Volume 9, Issue 2, pp 99–103 | Cite as

Bimetallic Pd–Cu/ZnO–Al2O3 and Pd–Cu/ZrO2–Al2O3 catalysts for methanol synthesis

  • Pawel Mierczynski
  • Radoslaw Ciesielski
  • Adam Kedziora
  • Waldemar Maniukiewicz
  • Tomasz P. Maniecki
Catalysis in Chemical and Petrochemical Industry

Abstract

Monometallic copper and bimetallic palladium-copper catalysts supported on ZnO–Al2O3 and ZrO2–Al2O3 were prepared by conventional impregnation method and tested in methanol synthesis reaction under elevated pressure (3.5 MPa) in gradientless reactor at 220°C. The physicochemical properties of prepared catalytic systems were studied using BET, X-ray, TPR-H2, TPD-NH3 techniques. The promotion effect of palladium on catalytic activity and selectivity of copper supported catalyst in methanol synthesis reaction was proven. The highest activity of this system is explained by the Pd–Cu alloy formation.

Keywords

methanol synthesis palladium–copper catalysts binary oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schultz, T., Zhou, S., and Sundmacher, K., Chem. Eng. Technol., 2001, vol. 24, no. 12, pp. 1223–1233.CrossRefGoogle Scholar
  2. 2.
    Olah, G.A., Goeppert, A., and Surya Prakash, G.K., J. Org. Chem., 2009, vol. 74, no. 2, pp. 487–498.CrossRefGoogle Scholar
  3. 3.
    Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., and Sun, Y., Catal. Today, 2009, vol. 148, nos. 3–4, pp. 221–231.CrossRefGoogle Scholar
  4. 4.
    Soloviev, S.O., Kapran, A.Y., Orlyk, S.N., and Gubareni, E.V., J. Nat. Gas Chem., 2011, vol. 20, no. 2, pp. 184–190.CrossRefGoogle Scholar
  5. 5.
    Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C.V., Zwickel, T., and Minx, J.C., Eds., Cambridge, UK, Cambridge University Press, 2014. https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_summary-for-policymakers.pdf. Cited April 6, 2017.Google Scholar
  6. 6.
    Maniecki, T.P., Mierczynski, P., Maniukiewicz, W., Bawolak, K., Gebauer, D., and Jozwiak, W.K., Catal. Lett., 2009, vol. 130, no. 3, pp. 481–488.CrossRefGoogle Scholar
  7. 7.
    Mierczynski, P., Maniecki, T.P., Maniukiewicz, W., and Jozwiak, W.K., React. Kinet., Mech. Catal., 2011, vol. 104, no. 1, pp. 139–148.CrossRefGoogle Scholar
  8. 8.
    Melián-Cabrera, I., López Granadosm, M., and Fierro, J.L.G., J. Catal., 2002, vol. 210, no. 2, pp. 273–284.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Pawel Mierczynski
    • 1
  • Radoslaw Ciesielski
    • 1
  • Adam Kedziora
    • 1
  • Waldemar Maniukiewicz
    • 1
  • Tomasz P. Maniecki
    • 1
  1. 1.Institute of General and Ecological ChemistryLodz University of TechnologyLodzPoland

Personalised recommendations