Catalysis in Industry

, Volume 9, Issue 2, pp 122–127 | Cite as

Improving the yield and quality of reformate via combined application of staged reforming and hydroisomerization

Catalysis in Petroleum Refining Industry
  • 20 Downloads

Abstract

Three process flowsheets combining the processes of catalytic reforming, interstage separation, and reformate hydroisomerization are considered to improve the yield and quality of reformate (i.e., reduce the content of aromatics, including benzene). It is shown that the process flowsheet with the distillation of the intermediate reformate into three fractions (IBP-85°C, 85–150°C, and EBP-150°C) is the best one, since it allows the production of high-octane gasoline compounds with a reduced benzene content (less than 1 wt %) at an appreciable increase in the yield of reformate (up to 4–5 wt %) and its research octane number (RON) (up to 2), in comparison to traditional (fixed-bed) catalytic reforming. Effective catalysts are selected for the reforming and reformate hydroisomerization stages and are used to perform experimental modeling of the considered flowsheets for the combined reforming–hydroisomerization process. The results confirm analytical estimates for the effectiveness of the developed technology.

Keywords

reformate hydroisomerization benzene content decrease catalytic reforming staged reforming interstage reformate separation reformate yield increase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyers, R.A. Handbook of Petroleum Refining Processes, 2003, New York: McGraw-Hill, 2003.Google Scholar
  2. 2.
    Kapustin, V.M. and Gureev, A.A., Tekhnologiya pererabotki nefti (Petroleum Refining Technology), part 2 Destruktivnye protsessy (Destructive Processes), Moscow: KolosS, 2007.Google Scholar
  3. 3.
    Kuz’mina, R.I., Kataliticheskii riforming uglevodorodov (Catalytic Reforming of Hydrocarbons), Saratov SYuI MVD Rossii, 2010.Google Scholar
  4. 4.
    Smolikov, M.D., Kir’yanov, D.I., Pashkov, V.V., Zatolokina, E.V., and Belyi, A.S., Catal. Ind., 2009, vol. 1, no. 1, pp. 61–65.CrossRefGoogle Scholar
  5. 5.
    Lavrenov, A.V., Belyi, A.S., Doronin, V.P., and Likholobov, V.A., Khim. Tekh., 2010, no. 11, pp. 4–7.Google Scholar
  6. 6.
    Zlotnikov, L.E., Neftepererab. Neftekhim., 2004, no. 1, pp. 3–8.Google Scholar
  7. 7.
    Likholobov, V.A., Lavrenov, A.V, Doronin, V.P., Duplyakin, V.K., and Belyi, A.S., Mir Nefteprod., 2009, no. 2, pp. 8–13.Google Scholar
  8. 8.
    Levoshchenko, A.S., Abdul’minev, K.G., Akhmetov, A.F., and Morozov, A.N., Neftepererab. Neftekhim., 2009, no. 5, pp. 8–9.Google Scholar
  9. 9.
    Akhmetov, A.F., Tanatarov, M.A., Georgievskii, V.Yu., Shipkin, V.V., Bortov, V. Yu., and Kiladze, T. K., Chem. Technol. Fuels Oils, 1984, vol. 20, no. 10, pp. 482–485.CrossRefGoogle Scholar
  10. 10.
    Matuzov, G.L. and Akhmetov, A.F., Bashk. Khim. Zh., 2007, vol. 14, no. 2, pp. 121–125.Google Scholar
  11. 11.
    Akhmetov, A.F., Saifulin, N.R., and Abdul’minev, K.G., Neftepererab. Neftekhim., 1998, no. 7, pp. 42–47.Google Scholar
  12. 12.
    Kondrashev, D.O., Catalytic reforming with an interstage reformate separation unit, Cand. Sci. (Eng.) Dissertation, Ufa Ufa State Pet. Techn. Univ., 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.PAO Gazprom NeftSt. PetersburgRussia

Personalised recommendations