Advertisement

Catalysis in Industry

, Volume 8, Issue 3, pp 213–216 | Cite as

Effect of titanium–magnesium catalyst morphology on the properties of polypropylene upon propylene polymerization in a liquid monomer

  • I. I. Salakhov
  • A. Z. Batyrshin
  • S. A. Sergeev
  • G. D. Bukatov
  • A. A. Barabanov
  • M. A. Mats’ko
  • A. G. Sakhabutdinov
  • V. A. Zakharov
Catalysis in Chemical and Petrochemical Industry

Abstract

The effect of the particle size of an IK-8-21 domestic titanium-magnesium catalyst on the properties of polypropylene (PP) produced during the polymerization of propylene in a liquid monomer is studied. Catalysts with particle sizes of 20 to 64 μm are shown to have high activity and identical sensitivity to hydrogen and allow PP to be obtained with a narrow distribution of particles over size, high isotacticity, and close values of crystallinity, melting temperature, and physicomechanical properties. A slight decrease in the activity and bulk density of PP powder is observed when the average size of catalyst particles is increased from 20 to 43 μm. A more notable reduction in the activity and bulk density of PP powder is observed for catalyst with particle sizes of 62 to 64 μm. IK-8-21 catalyst is not inferior to its foreign analogues with respect to the properties of the resulting PP.

Keywords

Ziegler–Natta catalyst titanium-magnesium catalyst polymerization propylene polypropylene properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boor, J., Jr., Ziegler-Natta Catalysts and Polymerizations, New York: Academic Press, 1979.Google Scholar
  2. 2.
    Bukatov, G.D., Zaikovskii, V.I., Zakharov, V.A., Kryukova, G.N., Fenelonov, V.B., and Zagrafskaya, R.V., Vysokomol. Soedin., Ser. A, 1982, vol. 24, no. 3, pp. 542–548.Google Scholar
  3. 3.
    Polyolefins Planning Service (POPS) Report. Technology Review. New York: Nexant Inc., 2008.Google Scholar
  4. 4.
    Bukatov, G.D., Sergeev, S.A., Zakharov, V.A., Maier, E.A., Shabalin, E.Yu., and Ionov, A.R., Khim. Prom-st’, 2009, vol. 86, no. 6, pp. 293–296.Google Scholar
  5. 5.
    Dudchenko, V.K., Kolkov, K.M., and Maier, E.A., Plast. Massy, 2011, no. 10, pp. 45–49.Google Scholar
  6. 6.
    Salakhov, I.I., Batyrshin, A.Z., Sergeev, S.A., Bukatov, G.D., Barabanov, A.A., Sakhabutdinov, A.G., Zakharov, V.A., and Gilmano., Kh.Kh., Catal. Ind., 2014, vol. 6, no. 3, pp. 198–201.CrossRefGoogle Scholar
  7. 7.
    RF Patent 2191196, 2002.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. I. Salakhov
    • 1
  • A. Z. Batyrshin
    • 1
  • S. A. Sergeev
    • 2
  • G. D. Bukatov
    • 2
  • A. A. Barabanov
    • 2
  • M. A. Mats’ko
    • 2
  • A. G. Sakhabutdinov
    • 1
  • V. A. Zakharov
    • 2
  1. 1.PAO NizhnekamskneftekhimNizhnekamskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations