Advertisement

Catalysis in Industry

, Volume 8, Issue 3, pp 274–279 | Cite as

Pretreatment of rice husk in a pilot scale mill for further enzymatic hydrolysis

  • E. M. Podgorbunskikh
  • A. L. Bychkov
  • O. I. Lomovskii
Biocatalysis

Abstract

The effect of the mechanical activation of rice husk on the reactivity of its carbohydrates was studied. The activation was performed in a pilot-scale centrifugal roller mill. The mechanical treatment of the raw material led to an increase in its reactivity due to the increase in the specific surface area and amorphization of the crystalline regions of cellulose. The optimum process conditions of activation, leading to the preparation of a reactive product from rice husk, were determined: rotor frequency 1500 rpm, raw material feed rate 30 kg/h. The rice husk particles were ground to 45–50 μm under these conditions. These changes led to a sevenfold increase of the yield of low-molecular carbohydrates in the complete enzymatic hydrolysis of the material.

Keywords

enzymatic hydrolysis scaling mechanical pretreatment rice husk biofuel centrifugal roller mill 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKendry, P., Bioresour. Technol., 2002, vol. 83, no. 1, pp. 37–46.CrossRefGoogle Scholar
  2. 2.
    Gupta, A. and Verma, J.P., Renewable Sustainable Energy Rev., 2015, vol. 41, pp. 550–567.CrossRefGoogle Scholar
  3. 3.
    Anwar, Z., Gulfraz, M., and Irshad, M., J. Radiat. Res. Appl. Sci., 2014, vol. 7, no. 2, pp. 163–173.CrossRefGoogle Scholar
  4. 4.
    Puitin, V., Directive of the Development of Biotechnologies in the Russian Federation to 2020 no. 1853p-P8. VP-P8-2322. April 24, 2012.Google Scholar
  5. 5.
    European Parliament and Council Directive 2009/28/EC. April 23, 2009.Google Scholar
  6. 6.
    Prasad, M.P., Sethi, R., Tamilarasan, M., and Subha, K.S., Adv. BioTech, 2009, vol. 9, no. 5, pp. 41–43.Google Scholar
  7. 7.
    Sun, Y. and Cheng, J., Bioresour. Technol., 2002, vol. 83, no. 1, pp. 1–11.CrossRefGoogle Scholar
  8. 8.
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., and Negro, M.J., Bioresour. Technol., 2010, vol. 101, no. 13, pp. 4851–4861.CrossRefGoogle Scholar
  9. 9.
    Yu, M., Li, J., Chang, S., Du, R., Li, S., Zhang, L., Fan, G., Yan, Z., Cui, T., Cong, G., and Zhao, G., Energies, 2014, vol. 7, no. 7, pp. 4054–4067.CrossRefGoogle Scholar
  10. 10.
    Ogarkov, V.I., Kiselev, O.I., Prishchenko, Yu.E., et al., Biotekhnologiya, 1990, vol. 3, pp. 66–71.Google Scholar
  11. 11.
    Yu, J., Zhong, J., Zhang, X., and Tan, T., Appl. Biochem. Biotechnol., 2010, vol. 160, no. 2, pp. 401–409.CrossRefGoogle Scholar
  12. 12.
    Manaenkov, O.V., Filatova, A.E., Makeeva, O.Yu., Kislitsa, O.V., Doluda, V.Yu., Sidorov, A.I., Matveeva, V.G., and Sul’man, E.M., Catal. Ind., 2014, vol. 6, no. 2, pp. 150–157.CrossRefGoogle Scholar
  13. 13.
    Vasilov, R.G., Vestn. Biotekhnol. Fizikokhim. Biol. im. Yu.A. Ovchinnikova, 2007, vol. 3, no. 2, pp. 50–60.Google Scholar
  14. 14.
    Taherzadeh, M.J. and Karimi, K., Int. J. Mol. Sci., 2008, vol. 9, no. 9, pp. 1621–1651.CrossRefGoogle Scholar
  15. 15.
    Golyazimova, O.V., Politov, A.A., and Lomovskii, O.I., Khim. Rastit. Syr’ya, 2009, no. 2, pp. 59–63.Google Scholar
  16. 16.
    Shapolova, E.G., Bychkov, A.L., and Lomovskii, O.I., Chem. Sustainable Dev., 2012, vol. 20, no. 5, pp. 587–591.Google Scholar
  17. 17.
    Shapolova, E.G., Bychkov, A.L., and Lomovsky, O.I., J. Int. Sci. Publ.: Mater., Methods, Technol., 2012, vol. 6, no. 1, pp. 196–206.Google Scholar
  18. 18.
    Diaz, A., Le Toullec, J., Blandino, A., de Ory, I., and Caro, I., Chem. Eng. Trans., 2013, vol. 32, pp. 949–954.Google Scholar
  19. 19.
    Banerjee, S., Sen, R., Pandey, R.A., Chakrabarti, T., Satpute, D., Giri, B.S., and Mudliar, S., Biomass Bioenergy, 2009, vol. 33, no. 12, pp. 1680–1686.CrossRefGoogle Scholar
  20. 20.
    Segal, L., Creely, J.J., Martin, A.E., Jr., and Conrad, C.M., Text. Res. J., 1959, vol. 29, no. 10, pp. 786–794.CrossRefGoogle Scholar
  21. 21.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic Press, 1982.Google Scholar
  22. 22.
    Bychkov, A.L., Buchtoyarov, V.A., and Lomovsky, O.L., Cellul. Chem. Technol., 2014, vol. 48, nos. 5–6, pp. 545–551.Google Scholar
  23. 23.
    RF Patent 2381071, 2010.Google Scholar
  24. 24.
    Sergienko, V.I., Zemnukhova, L.A., Egorov, A.G., Shkorina, E.D., and Vasilyuk, N.S., Ross. Khim. Zh., 2004, vol. 48, no. 3, pp. 116–124.Google Scholar
  25. 25.
    Phaiboonsilpa, N., Ogura, M., Yamauchi, K., Rabemanolontsoa, H., and Saka, S., Ind. Crops Prod., 2013, vol. 49, pp. 484–491.CrossRefGoogle Scholar
  26. 26.
    Johar, N., Ahmad, I., and Dufresne, A., Ind. Crops Prod., 2012, vol. 37, no. 1, pp. 93–99.CrossRefGoogle Scholar
  27. 27.
    Yeh, A.-I., Huang, Y.-C., and Chen, S.H., Carbohydr. Polym., 2010, vol. 79, no. 1, pp. 192–199.CrossRefGoogle Scholar
  28. 28.
    Fan, L.T., Lee, Y.-H., and Beardmore, D.H., Biotechnol. Bioeng., 1980, vol. 22, no. 1, pp. 177–199.CrossRefGoogle Scholar
  29. 29.
    Silva, G.G.D., Conturier, M., Berrin, J.-G., Buléon, A., and Rouau, X., Bioresour. Technol., 2012, vol. 103, no. 1, pp. 192–200.CrossRefGoogle Scholar
  30. 30.
    Bychkov, A.L., Ryabchikova, E.I., Korolev, K.G., and Lomovsky, O.L., Biomass Bioenergy, 2012, vol. 47, pp. 260–267.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. M. Podgorbunskikh
    • 1
  • A. L. Bychkov
    • 1
    • 2
  • O. I. Lomovskii
    • 1
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations