Catalysis in Industry

, Volume 8, Issue 1, pp 40–47 | Cite as

A catalyst for producing diesel fuels with improved cold flow characteristics

  • A. I. Grudanova
  • L. A. Gulyaeva
  • L. A. Krasil’nikova
  • E. A. Chernysheva
Catalysis in Petroleum Refining Industry


The aim of this work is to develop a catalyst for the hydroisomerization of a straight-run hydrotreated diesel fraction to allow the production of a diesel fuel with improved cold flow characteristics. Some catalyst samples containing zirconia modified with tungstate anions, high-silica zeolite, noble (Pt, Pd) or transition (Ni, Mo) metals, a binder (alumina), and promotors are synthesized. The samples are subjected to laboratory tests at temperatures of 250–360°C, a pressure of 3.0 MPa, feed hourly space velocities (FHSVs) of 1.5–3.0 h–1, and an H2/feedstock ratio of 1000 m3/m3. The target product yield relative to feedstock on GITs-1 (with Ni, Mo) and GITs-2 (with Pt, Pd) is 84.6 and 91.0 wt %, respectively, and the depression of the cloud and cold filter plugging points in comparison to the feedstock was 20°C for both catalysts. The possibility of producing a diesel fuel for a cold climate in compliance with GOST R (Russian State Standard) 52368–2005 or a winter diesel fuel in compliance with TR TS (Customs Union Technical Regulation) 013/2011 is shown.


bifunctional catalyst hydroisomerization isodewaxing waxy fuels cold flow properties high-silica zeolite zirconia hydrogenating metal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grudanova, A.I., Khavkin, V.A., Gulyaeva, L.A., Sergienko, S.A., Krasil’nikova, L.A., and Mis’ko, O.M., Mir Nefteprod., 2013, no. 12, pp. 3–7.Google Scholar
  2. 2.
    Lysenko, S.V., Baranova, S.V., Sungurov, A.V., Kovaleva, N.F., and Karakhanov, E.A., Neftekhimiya, 2005, vol. 45, no. 5, pp. 331–335.Google Scholar
  3. 3.
    Busto, M., Lovato, M.E., Vera, C.R., Shimizu, K., and Grau, J.M., Appl. Catal., A, 2009, vol. 355, nos. 1–2, pp. 123–131.CrossRefGoogle Scholar
  4. 4.
    Kimura, T., Catal. Today, 2003, vol. 81, no. 1, pp. 57–63.CrossRefGoogle Scholar
  5. 5.
    Martínez, A., Prieto, G., Arribas, M.A., and Conceptión, P., Appl. Catal., 2006, vol. 309, no. 2, pp. 224–236.CrossRefGoogle Scholar
  6. 6.
    Kuznetsov, P.N., Kuznetsova, L.I., and Kazbanova, A.V., Chem. Sustainable Dev., 2010, vol. 18, no. 3, pp. 299–311.Google Scholar
  7. 7.
    Kuznetsov, P.N., Kuznetsova, L.I., Zhizhaev, A.M., Obukhov, Ya.V., Koval’chuk, V.I., Tverdokhlebov, V.P., and Sannikov, A.L., Khim. Tekhnol., 2004, no. 1, pp. 2–6.Google Scholar
  8. 8.
    Kikhtyanin, O.V., Rubanov, A.E., Ayupov, A.B., and Echevsky, G.V., Fuel, 2010, vol. 89, no. 10, pp. 3085–3092.CrossRefGoogle Scholar
  9. 9.
    GOST R (Russian State Standard) 52368–2005: EURO Diesel Fuel. Technical Specifications, 2005 (with change no. 1, March 1, 2012).Google Scholar
  10. 10.
    TR TS (Customs Union Technical Regulation) 013/2011: Requirements to Automobile and Aviation Gasoline, Diesel and Ship Fuel, Jet Engine Fuel and Furnace Boiler Oil, 2011.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. I. Grudanova
    • 1
  • L. A. Gulyaeva
    • 1
  • L. A. Krasil’nikova
    • 1
  • E. A. Chernysheva
    • 2
  1. 1.All-Russian Research Institute of Oil RefiningMoscowRussia
  2. 2.Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations