Advertisement

Catalysis in Industry

, Volume 8, Issue 1, pp 23–31 | Cite as

problems of increase in the selectivity of ethylene oxychlorination processes: II. General patterns in the formation of chloroorganic byproducts in the ethylene oxychlorination Process

  • M. R. Flid
Catalysis in chemical and petrochemical industry

Abstract

We continue to consider some general patterns in the formation of chloroorganic byproducts during the process of ethylene oxychlorination in a fluidized catalyst bed. Based on the literature data, some conclusions are drawn as to chloroorganic byproducts generally resulting from the secondary conversion of 1,2-dichloroethane via the reactions of its dehydrochlorination and partial oxidation. An rise in process temperature increases the yield of byproducts. It is shown that the use of catalysts containing chlorides of alkali or alkali-earth metals along with copper chloride reduces the share from side reactions. When the process is performed under industrial conditions, it is best to use catalysts with low contents of copper on the outer surfaces of the grains. The penetration of iron into a catalyst due to the erosion of industrial reactor walls results in both a slowdown in the rate of oxychlorination and an increase in the yield of chloroorganic byproducts.

Keywords

catalytic oxychlorination dehydrochlorination dichloroethane trichloroethane ethylene chlorides of alkali and alkali-earth metals iron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flid, M.R., Catal. Ind., 2015, vol. 7, no. 2, pp. 119–127.CrossRefGoogle Scholar
  2. 2.
    Naworski, J.S. and Velez, E.S., in Applied Industrial Catalysis, Leach, B.E., Ed., New York: Academic Press, 1983, vol. 1, p. 239–272.Google Scholar
  3. 3.
    Carmello, D., Finocchio, E., Marsella, A., Cremaschi, B., Leofanti, G., Padovan, M., and Busca, G., J. Catal., 2000, vol. 191, no. 2, pp. 354–363.CrossRefGoogle Scholar
  4. 4.
    Flid, M.R. and Treger, Yu.A., Vinilkhlorid. Khimiya i tekhnologiya (Vinyl Chloride: Chemistry and Technology), Moscow: Kalvis, 2008.Google Scholar
  5. 5.
    Gel’perin, E.I., Bakshi, Yu.M., Zyskin, A.G., Snagovskii, Yu.S., and Avetisov, A.K., Khim. Promst., 1996, no. 6, p.356.Google Scholar
  6. 6.
    Bakshi, Yu.M., Dmitrieva, M.P., and Gel’bshtein, A.I., Kinet. Katal., 1984, vol. 25, no. 1, p.135.Google Scholar
  7. 7.
    Trushechkina, M.A., Zvereva, M.V., and Flid, M.R., Katal. Promsti, 2008, no. 4, p.5.Google Scholar
  8. 8.
    Leofanti, G., Padovan, M., Garilli, M., Carmello, D., Zecchina, A., Spoto, G., Bordiga, S., Turnes Palomino, G., and Lamberti, C., J. Catal., 2000, vol. 189, no. 1, pp. 91–104.CrossRefGoogle Scholar
  9. 9.
    Leofanti, G., Marsella, A., Cremaschi, B., Garilli, M., Zecchina, A., Spoto, G., Bordiga, S., Fisicaro, P., Prestipino, C., Villain, F. and Lamberti, C., J. Catal., 2002, vol. 205, no. 2, pp. 375–381.CrossRefGoogle Scholar
  10. 10.
    Leofanti, G., Padovan, M., Garilli, M., Carmello, D., Marra, G.L., Zecchina, A., Spoto, G., Bordiga, S., and Lamberti, C., J. Catal., 2000, vol. 189, no. 1, pp. 105–116.CrossRefGoogle Scholar
  11. 11.
    Leofanti, G., Marsella, A., Cremaschi, B., Garilli, M., Zecchina, A., Spoto, G., Bordiga, S., Fisicaro, P., Berlier, G., Prestipino, C., Casali, G., and Lamberti, C., J. Catal., 2001, vol. 202, no. 2, pp. 279–295.CrossRefGoogle Scholar
  12. 12.
    Valle, J., Vargas, A., Ferreira, J.M., Flores, A., and Novaro, O., Stud. Surf. Sci. Catal., 1981, vol. 7, part B, pp. 1040–1046.CrossRefGoogle Scholar
  13. 13.
    Avila, P., Blanco, J., Garcia-Fierro, J.L., Mendioroz, S., and Soria, J., Stud. Surf. Sci. Catal., 1981, vol. 7, part B, pp. 1031–1039.CrossRefGoogle Scholar
  14. 14.
    Flid, M.R., Kurlyandskaya, I.I., Solomonik, I.G., and Babotina, M.V., Khim. Prom-st., 1996, no. 6, p.364.Google Scholar
  15. 15.
    US Patent 4587230, 1984.Google Scholar
  16. 16.
    Süd-Chemie, Paper presented at the Petrochemical and Refinery Seminar, Moscow, 2001.Google Scholar
  17. 17.
    Kurta, S.A., Catal. Ind., 2011, vol. 3, no. 2, pp. 136–143.CrossRefGoogle Scholar
  18. 18.
    Kurta, S.A., Chem. Chem. Technol., 2012, vol. 6, no.1, pp. 1–8.Google Scholar
  19. 19.
    Todo, N., Kurita, M., and Hagiwara, H., Kogyo Kagaku Zasshi, 1966, vol. 69, p. 1463.CrossRefGoogle Scholar
  20. 20.
    Gel’bshtein, A.I., in Vsesoyuznaya shkola po katalizatoram: Lektsii (All-Union School on Catalysts: Lectures), Novosibirsk: Inst. Katal. Sib. Otd. Akad. Nauk SSSR, 1981, no. 3. pp. 33–81.Google Scholar
  21. 21.
    Flid, M.R., Kurlyandskaya, I.I., Dmitriev, Yu.K., and Babotina, M.V., in Principles and Methods for Accelerated Catalyst Design and Testing, Derouane, E.G., Parmon, V., Lemos, F., and Ribeiro, F.R., Eds., Dordrecht: Kluwer Academic Publishers, 2002, pp. 389–397.Google Scholar
  22. 22.
    Flid, M.R., Abstract of Papers, Materialy XVII Mendeleevskogo s″ezda po obshchei i prikladnoi khimii (Proc. of the XVII Mendeleev Congress on General and Applied Chemistry), Kazan, 2003, p.432.Google Scholar
  23. 23.
    Finocchio, E., Rossi, N., Busca, G., Padovan, M., Leofanti, G., Cremaschi, B., Marsella, A., and Carmello, D., J. Catal., 1998, vol. 179, no. 2, pp. 606–618.CrossRefGoogle Scholar
  24. 24.
    Aver’yanov, V.A., Taranyuk, L.A., Alekseev, V.G., Pakhomov, N.A., and Volodin, A.M., Katal. Prom-sti, 2006, no. 6, p.3.Google Scholar
  25. 25.
    Dmitrieva, M.P., Bakshi, Yu.M., and Gel’bshtein, A.I., Kinet. Katal., 1990, vol. 31, no. 4, p.834.Google Scholar
  26. 26.
    Dmitrieva, M.P., Bakshi, Yu.M., and Gel’bshtein, A.I., Kinet. Katal., 1991, vol. 32, no. 1, p. 85.Google Scholar
  27. 27.
    Sai Prasad, P.S., Nageshwar Rao, V., Prasad, K.B.S., and Kanta Rao, P., Solid State Ionics, 1990, vol. 42, nos. 1–2, pp. 117–119.CrossRefGoogle Scholar
  28. 28.
    Rouco, A.J., Appl. Catal., A, 1994, vol. 117, no. 2, pp. 139–149.CrossRefGoogle Scholar
  29. 29.
    Muddada, N.B., Olsbye, U., Fuglerud, T., Vidotto, S., Marsella, A., Bordiga, S., Gianolio, D., Leofanti, G., and Lamberti, C., J. Catal., 2011, vol. 284, no. 2, pp. 236–246.CrossRefGoogle Scholar
  30. 30.
    Muddada, N.B., Olsbye, U., Leofanti, G., Gianolio, D., Bonino, F., Bordiga, S., Fuglerud, T., Vidotto, S., Marsella, A., and Lamberti, C., Dalton Trans., 2010, vol. 39, no. 36, pp. 8437–8449.CrossRefGoogle Scholar
  31. 31.
    Gianolio, D., Muddada, N.B., Olsbye, U., and Lamberti, C., Nucl. Instrum. Methods Phys. Res., Sect. B, 2012, vol. 284, pp. 53–57.CrossRefGoogle Scholar
  32. 32.
    Aharoni, C. and Inbar, J., J. Appl. Chem. Biotechnol., 1983, vol. 23, p.333.CrossRefGoogle Scholar
  33. 33.
    Kurta, S.A., Mykytyn, I.M., and Khaber, M.V., Russ. J. Appl. Chem., 2005, vol. 78, no. 7, pp. 1088–1092.CrossRefGoogle Scholar
  34. 34.
    Flid, M.R., Kurlyandskaya, I.I., Cavalli, L, Babotina, M.V., and Treger Yu.A, Katal. Prom-sti, 2004, no. 6, p.10.Google Scholar
  35. 35.
    Kurlyandskaya, I.I., Flid, M.R., Cavalli, L., Glazunova, E.D., and Treger, Yu.A., Katal. Promsti, 2005, no. 4, p.3.Google Scholar
  36. 36.
    Treger, Yu.A., Kartashov, L.M., and Krishtal’, N.F., Osnovnye khlororganicheskie rastvoriteli (Principal Chlorinated Organic Solvents), Moscow: Khimiya, 1984.Google Scholar
  37. 37.
    Muddada, N.B., Olsbye, U., Caccialupi, L., Leofanti, G., Gianolio, D., Bordiga, S., and Lamberti, C., Phys. Chem. Chem. Phys., 2010, vol. 12, no. 21, pp. 5605–5618.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Syntez Research and Engineering CenterMoscowRussia

Personalised recommendations