Catalysis in Industry

, Volume 7, Issue 4, pp 287–292 | Cite as

Zeolite catalysts with various porous structures in the synthesis of pyridines

  • N. G. Grigor’eva
  • N. A. Filippova
  • A. N. Khazipova
  • O. S. Travkina
  • B. I. Kutepov
Catalysis in Chemical and Petrochemical Industry
  • 47 Downloads

Abstract

Development of catalysts based on modified zeolites with a microporous or micro/mesoporous structure and on microporous metallosilicates is aimed at creating high-selectivity method of obtaining pyridine and alkylpyridines. In this study, pyridine and methylpyridines have been synthesized for the first time via the heterogeneous catalytic reaction of ethanol with formaldehyde and ammonia catalyzed by the microporous zeolites Y, Beta, ZSM-12, and ZSM-5 in the H-form and by a granular zeolite Y with a combined, micro-meso-macroporous structure (HY-MMM). The latter zeolite is particularly effective in the synthesis of picolines, affording a picoline selectivity of 46–63% at an ethanol conversion of 70–80%. Among the microporous catalysts, the most active ones are the highly decationized zeolites H-Y and H-Beta. The major products of the reaction occurring over H-Beta and H-ZSM-5 are pyridine (up to 50%) and picolines (up to 40%), and the main products of the same reaction carried out over H-Y and H-ZSM-12 are picolines (45–52%) and lutidines (19–25%). For zeolite H-Y-MMM, the ethanol conversion and the composition of pyridines depend on the reaction conditions.

Keywords

pyridine picolines lutidines microporous and micro/mesoporous zeolites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golunski, S.E. and Jackson, D., Appl. Catal., 1986, vol. 23, no. 1, pp. 1–14.CrossRefGoogle Scholar
  2. 2.
    Henry, G.D., Tetrahedron, 2004, vol. 60, no. 29, pp. 6043–6061.CrossRefGoogle Scholar
  3. 3.
    Scriven, E.F.V., Toomey, J.E., and Murugan, R., in Kirk-Othmer Encyclopedia of Chemical Technology, Kroschwitz, J.I. and Howe-Grant, M., Eds., New York: Wiley, 1996, vol. 20, pp. 641–679.Google Scholar
  4. 4.
    Higasio, Y.S. and Shoji, T., Appl. Catal., A, 2001, vol. 221, nos. 1–2, pp. 197–207.CrossRefGoogle Scholar
  5. 5.
    Weissermel, K. and Arpe, H.J., Industrial Organic Chemistry, New York: Wiley, 2008.Google Scholar
  6. 6.
    Pyridines—IHS Chemical Economics Handbook. http://www.ihs.com/products/chemical/planning/ceh/pyridines.aspx. Cited September 21, 2015.Google Scholar
  7. 7.
    Krishna Mohan Kandepi, V.V. and Narender, N., Catal. Sci. Technol., 2012, vol. 2, pp. 471–487.CrossRefGoogle Scholar
  8. 8.
    Reddy, K.S.K., Sreedhar, I. and Raghavan, K.V., Appl. Catal., A, 2008, vol. 339, no. 1, pp. 15–20.CrossRefGoogle Scholar
  9. 9.
    Reddy, K.S.K., Sreedhar, I., Venkateshwar, S., and Raghavan, K.V., Catal. Lett., 2008, vol. 125, no. 1, pp. 110–115.CrossRefGoogle Scholar
  10. 10.
    Reddy, K.S.K., Sreedhar, I., and Raghavan, K.V., Can. J. Chem. Eng., 2011, vol. 89, no. 4, pp. 854–863.CrossRefGoogle Scholar
  11. 11.
    EP Patent 0837849, 2002.Google Scholar
  12. 12.
    US Patent 7365204, 2008.Google Scholar
  13. 13.
    Shimizu, S., Abe, N., Iguchi, A., Dohba, M., Sato, H., and Hirose, K., Microporous Mesoporous Mater., 1998, vol. 21, nos. 4–6, pp. 447–451.CrossRefGoogle Scholar
  14. 14.
    EP Patent 1167352, 2006.Google Scholar
  15. 15.
    US Patent 6281362, 2001.Google Scholar
  16. 16.
    Van der Gaag, F.J., Louter, F., Oudejans, J.C. and van Bekkum, H., Appl. Catal., 1986, vol. 26, pp. 191–201.CrossRefGoogle Scholar
  17. 17.
    Rama Rao, A.V., Kulkarni, S.J., Ramachandra Rao, R., and Subrahmanyanm, M., Appl. Catal., A, 1994, vol. 111, no. 2, pp. L101–L108.Google Scholar
  18. 18.
    Kulkarni, S.J., Ramachandra Rao, R., Subrahmanyanm, M. and Rama Rao, A.V., Appl. Catal., A, 1994, vol. 113, no. 1, pp. 1–7.CrossRefGoogle Scholar
  19. 19.
    Khazipova, A.N., Pavlova, I.N., Grigor’eva, N.G., Kutepov, B.I., Pavlov, M.L., and Basimova, R.A., Khim. Tekhnol., 2012, no. 1, pp. 5–9.Google Scholar
  20. 20.
    RF Patent 2 456 238, 2012.Google Scholar
  21. 21.
    Khazipova, A.N., Kutepov, B.I., Pavlov, M.L., Grigor’eva, N.G., Shestopal, Ya.L., Pashkina, A.N., and Travkin, E.A., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1841–1844.CrossRefGoogle Scholar
  22. 22.
    Yushchenko, V.V., Zh. Fiz. Khim., 1997, vol. 71, no. 4, pp. 628–632.Google Scholar
  23. 23.
    Plachenov, T.G. and Kolosentsev, S.D., Porometriya (Porosimetry), Moscow: Khimiya, 1988.Google Scholar
  24. 24.
    Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Technique), Moscow: Khimiya, 1975.Google Scholar
  25. 25.
    Basimova, R.A., Liquid-phase disproportionation of diethylbenzenes and benzene to ethylbenzene over zeolite catalysts, Cand. Sci. (Chem.) Dissertation, Ufa: Inst. Petrochem. Catal. RAS, 2009.Google Scholar
  26. 26.
    Baerlocher, C., McCusker, L.B., and Olson, D.H., Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. G. Grigor’eva
    • 1
  • N. A. Filippova
    • 1
  • A. N. Khazipova
    • 1
  • O. S. Travkina
    • 1
  • B. I. Kutepov
    • 1
  1. 1.Institute of Petrochemistry and CatalysisRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations