Catalysis in Industry

, Volume 7, Issue 3, pp 239–243 | Cite as

Enzymatic synthesis of polyethylene glycol-400 esters

  • V. S. Gamayurova
  • M. E. Zinov’eva
  • N. V. Kalacheva
  • K. L. Shnaider
Biocatalysis
  • 30 Downloads

Abstract

Esters of fatty acids (FAs) and polyethylene glycol-400 (PEG) are valuable chemically derived surfactants. In this work, it is shown that the chemical synthesis of PEG esters can be replaced by enzymatic synthesis under milder conditions and using simpler and more environmentally friendly technology. The main obstacles to enzymatic catalysis in a system of PEG and higher FAs are the high viscosity of the former and the low water solubility of the latter. These problems are solved by selecting organic media and other conditions of the process mediated by pancreatic lipase. The optimum conditions for the synthesis of PEG esters of FAs are determined: reaction medium, benzene/hexane in a ratio of 2: 3; optimum temperature, 25°C; water content in the system, no more than 0.2%; FA: PEG molar ratio, 1: 1.8; reaction time, 48 h. Under these conditions, the yields in synthesizing PEG esters of capric, lauric, and palmitic acids are 80, 78, and 44%, respectively.

Keywords

polyethylene glycol-400 fatty acids biocatalyst in nonaqueous solvents pancreatic lipase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schöfeldt, N., Grenzflächenaktive Äthylenoxid-Addukte, Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1976.Google Scholar
  2. 2.
    Sharma, C.K., Chauhan, G.S., and Kanwar, S.S., J. Appl. Polym. Sci., 2011, vol. 121, no. 5, pp. 2674–2679.CrossRefGoogle Scholar
  3. 3.
    Zoumpanioti, M., Parmaklis, P., Domínguez de María, P., Stamatis, H., Sinisterra, J.V., and Xenakis, A., Biotechnol. Lett., 2008, vol. 30, no. 9, pp. 1627–1631.CrossRefGoogle Scholar
  4. 4.
    Feddern, V., Yang, Z., Xu, X., Badiale-Furlong, E., and de Souza-Soares, L.A., Ind. Eng. Chem. Res., 2011, vol. 50, no. 12, pp. 7183–7190.CrossRefGoogle Scholar
  5. 5.
    Milašinovi, N., Kne evi Jugovi, Z., Jakovljevi, Ž., Filipovi, J., and Kalagasidis Kruši, M., Chem. Eng. J., 2012, vols. 181–182, pp. 614–623.Google Scholar
  6. 6.
    Gamayurova, V.S., Zinov’eva, M.E., and Elizarova, E.V., Katal. Prom-sti, 2008, no. 3, pp. 54–58.Google Scholar
  7. 7.
    Gamayurova, V.S. and Zinov’eva, M.E., Butlerov. Soobshch., 2011, vol. 25, no. 7, pp. 87–95.Google Scholar
  8. 8.
    Gamayurova, V.S., Zinov’eva, M.E., and Shnaider, K.L., Vestn. Kazan. Gos. Tekhnol. Univ., 2011, no. 6, pp. 211–218.Google Scholar
  9. 9.
    Gracheva, I.M., tGrachev, Yu.P., Mosichev, M.S., Borisenko, E.G., Bogatkov, S.V., and Gernet, M.V., Laboratornyi praktikum po tekhnologii fermentnykh preparatov (Laboratory Practicum on Enzyme Preparation Technology), Moscow: Legkaya i Pishchevaya Promyshlennost’, 1982.Google Scholar
  10. 10.
    Zakupra, V.A., Metody analiza i kontrolya v proizvodstve poverkhnostno-aktivnykh veshchestv (Methods of Analysis and Control in Surfactant Production), Moscow: Khimiya, 1977.Google Scholar
  11. 11.
    Ioffe, B.V., Kostikov, R.R., and Razin, V.V., Fizicheskie metody opredeleniya stroeniya organicheskikh soedinenii (Physical Methods for the Structural Characterization of Organic Compounds), Moscow: Vysshaya Shkola, 1984.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. S. Gamayurova
    • 1
  • M. E. Zinov’eva
    • 1
  • N. V. Kalacheva
    • 2
  • K. L. Shnaider
    • 1
  1. 1.Kazan National Research Technological UniversityKazanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations