Advertisement

Catalysis in Industry

, Volume 7, Issue 2, pp 111–118 | Cite as

Homogeneous catalysts of redox reactions based on heteropoly acid solutions. II. Synthesis of catalyst for pilot industrial production of methylethylketone

  • V. F. Odyakov
  • E. G. Zhizhina
  • K. I. Matveev
  • V. N. Parmon
Catalysis in Chemical and Petrochemical Industry
  • 48 Downloads

Abstract

The homogeneous catalyst used in the 2005–2006 scale-up of the oxidation of n-butylenes into methylethylketone to the industrial level is a chloride-free aqueous solution of palladium complexes in a modified 0.25 M solution of Mo-V-P heteropoly acid with the molecular formula H12P3Mo18V7O85 (HPA-7′). Its advantages are increased oxidative capacity in the primary oxidation of n-C4H8 and increased thermal stability, which allows quick catalyst regeneration with atmospheric oxygen at 160–170°C. The paper describes the preparation of a pilot lot of the catalyst with a total volume of 50 L; the starting substances were V2O5, MoO3, and H3PO4. The key point of the synthesis was dissolving V2O5 while stirring in a dilute and cooled H2O2 solution. This formed V(V) peroxide complexes, which decompose at elevated temperature to give a 0.0175 M H6V10O28 solution. This solution was stabilized by adding a calculated amount of H3PO4 to give a more stable 0.0125 M H9PV14O42 solution. Since the H9PV14O42 solution occupied a large volume, its synthesis was performed three times in a 300-L reactor. In the main 500-L reactor, MoO3 was dissolved in water with stirring, while adding the remaining portion of H3PO4. The resulting mixture was evaporated, gradually introducing all of the previously obtained portions of the dilute H9PV14O42 solution. The resulting HPA-7′ solution was evaporated to ∼100 L and filtered twice, separating the insignificant amount of the precipitate. The filtered solution was again evaporated to 50 L, and a calculated amount of PdCl2 was added to it while stirring at 70–80°C. A total of 27 lots of the (Pd + 0.25 M HPA-7′) catalyst with a total volume of 1350 L were obtained. All apparatuses of the pilot industrial unit for MEK synthesis were filled with this catalyst.

Keywords

oxidation n-butylenes methylethylketone Mo-V-P heteropoly acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BE Patent 828603, 1975.Google Scholar
  2. 2.
    Smidt, J. and Krekeler, H., Hydrocarbon Process. Pet. Refin., 1963, vol. 42, no. 7, pp. 149–152.Google Scholar
  3. 3.
    Kozik, B.L., Pestrikov, S.V., and Savel’ev, A.P., Khim. Tekhnol. Topl. Masel, 1963, no. 11, pp. 11–15.Google Scholar
  4. 4.
    RF Patent 2230612, Izobreteniya, 2004, no. 17, part II, p. 389.Google Scholar
  5. 5.
    Zhizhina, E.G., Simonova, M.V., Odyakov, V.F., and Matveev, K.I., Appl. Catal., A, 2007, vol. 319, pp. 91–97.CrossRefGoogle Scholar
  6. 6.
    Zhizhina, E.G., Odyakov, V.F., and Simonova, M.V., Kinet. Catal., 2008, vol. 49, no. 6, pp. 773–781.CrossRefGoogle Scholar
  7. 7.
    Odyakov, V.F. and Matveev, K.I., Zh. Neorg. Khim., 1997, vol. 42, no. 5, pp. 718–720.Google Scholar
  8. 8.
    Odyakov, V.F., Zhizhina, E.G., Maksimovskaya, R.I., and Matveev, K.I., Zh. Neorg. Khim., 1998, vol. 43, no. 9, pp. 1451–1455.Google Scholar
  9. 9.
    Odyakov, V.F. and Matveev, K.I., USSR Inventor’s Certificate no. 1782934, Byull. Izobret., 1992, no. 33, p. 86.Google Scholar
  10. 10.
    Odyakov, V.F., Zhizhina, E.G., Maksimovskaya, R.I., and Matveev, K.I., Kinet. Katal., 1995, vol. 36, no. 5, pp. 795–800.Google Scholar
  11. 11.
    Novyi spravochnik khimika i tekhnologa. Osnovnye svoistva neorganicheskikh, organicheskikh i elementoorganicheskikh soedinenii (New Chemical Engineer’s Handbook: Basic Properties of Inorganic, Organic, and Elementoorganic Compounds), Skvortsov, N.K., Ed., St. Petersburg: NPO Mir i sem’ya, 2002.Google Scholar
  12. 12.
    Odyakov, V.F., Zhizhina, E.G., and Matveev, K.I., J. Mol. Catal. A: Chem., 2000, vol. 158, no. 1, pp. 453–456.CrossRefGoogle Scholar
  13. 13.
    Standard Potentials in Aqueous Solution, Bard, R., Parsons, J., and Jordan, J., Eds., New York: Marcel Dekker, 1985.Google Scholar
  14. 14.
    Odyakov, V.F., Zhizhina, E.G., and Maksimovskaya, R.I., Appl. Catal., A, 2008, vol. 342, nos. 1–2, pp. 126–130.CrossRefGoogle Scholar
  15. 15.
    Zhizhina, E.G. and Odyakov, V.F., React. Kinet. Catal. Lett., 2008, vol. 95, no. 2, pp. 301–312.CrossRefGoogle Scholar
  16. 16.
    Zhizhina, E.G. and Odyakov, V.F., Appl. Catal., A, 2009, vol. 358, no. 2, pp. 254–258.CrossRefGoogle Scholar
  17. 17.
    Matveev, K.I., Zhizhina, E.G., Odyakov, V.F., and Parmon, V.N., Catal. Ind., 2014, vol. 6, no. 3, pp. 202–211.CrossRefGoogle Scholar
  18. 18.
    Howarth, O.W. and Hunt, J.R., J. Chem. Soc., Dalton Trans., 1979, no. 9, pp. 1388–1391.Google Scholar
  19. 19.
    Alonso, B. and Livage, J., J. Solid State Chem., 1999, vol. 148, no. 1, pp. 16–19.CrossRefGoogle Scholar
  20. 20.
    Dean, G.A., Can. J. Chem., 1961, vol. 39, no. 6, pp. 1174–1183.CrossRefGoogle Scholar
  21. 21.
    Jahr, K.F. and Preuss, F., Chem. Ber., 1965, vol. 98, no. 10, pp. 3297–3302.CrossRefGoogle Scholar
  22. 22.
    Meyer, J., Z. Anorg. Allg. Chem., 1927, vol. 161, pp. 321–336.CrossRefGoogle Scholar
  23. 23.
    Novyi spravochnik khimika i tekhnologa. Khimicheskoe ravnovesie. Svoistva rastvorov (New Chemical Engineer’s Handbook: Chemical Equilibrium and Properties of Solutions), St. Petersburg: NPO Professional, 2004.Google Scholar
  24. 24.
    Aoshima, A. and Yamaguchi, T., Nippon Kagaku Kaishi, 1987, no. 6. pp. 969–975.Google Scholar
  25. 25.
    FRG Patent 2722375, Chem. Abstr., 1978, vol. 88, no. 20, 142283k.Google Scholar
  26. 26.
    Maksimov, G.M., Molchanov, V.V., and Goidin, V.V., Khim. Prom-st., 1997, no. 7, pp. 507–509.Google Scholar
  27. 27.
    Molchanov, V.V., Maksimov, G.M., Maksimovskaya, R.I., Goidin, V.V., and Buyanov, R.A., Inorg. Mater., 2003, vol. 39, no. 7, pp. 687–693.CrossRefGoogle Scholar
  28. 28.
    Fontenot, C.J., Wiench, J.W., Pruski, M., and Schrader, G.L., J. Phys. Chem. B, 2000, vol. 104, no. 49, pp. 11622–11631.CrossRefGoogle Scholar
  29. 29.
    Odyakov, V.F. and Zhizhina, E.G., Russ. J. Inorg. Chem., 2009, vol. 54, no. 3, pp. 361–367.CrossRefGoogle Scholar
  30. 30.
    Livage, J., Coord. Chem. Rev., 1998, vols. 178–180, part 2, pp. 999–1018.CrossRefGoogle Scholar
  31. 31.
    Atlamsani, A., Ziyad, M., and Bregeault, J.M., J. Chim. Phys. Phys.-Chim. Biol., 1995, vol. 92, nos. 7–8, pp. 1344–1364.Google Scholar
  32. 32.
    Odyakov, V.F., Zhizhina, E.G., and Matveev, K.I., Katal. Prom-sti, 2007, no. 4, pp. 19–25.Google Scholar
  33. 33.
    Odyakov, V.F. and Zhizhina, E.G., Kinet. Catal., 2011, vol. 52, no. 6. pp. 828–834.CrossRefGoogle Scholar
  34. 34.
    Zhizhina, E.G., Simonova, M.V., Odyakov, V.F., and Matveev, K.I., Katal. Prom-sti, 2005, no. 2, pp. 17–25.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. F. Odyakov
    • 1
  • E. G. Zhizhina
    • 1
  • K. I. Matveev
    • 1
  • V. N. Parmon
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations