Skip to main content
Log in

Homogeneous catalysts of redox reactions based on heteropoly acid solutions. II. Synthesis of catalyst for pilot industrial production of methylethylketone

  • Catalysis in Chemical and Petrochemical Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The homogeneous catalyst used in the 2005–2006 scale-up of the oxidation of n-butylenes into methylethylketone to the industrial level is a chloride-free aqueous solution of palladium complexes in a modified 0.25 M solution of Mo-V-P heteropoly acid with the molecular formula H12P3Mo18V7O85 (HPA-7′). Its advantages are increased oxidative capacity in the primary oxidation of n-C4H8 and increased thermal stability, which allows quick catalyst regeneration with atmospheric oxygen at 160–170°C. The paper describes the preparation of a pilot lot of the catalyst with a total volume of 50 L; the starting substances were V2O5, MoO3, and H3PO4. The key point of the synthesis was dissolving V2O5 while stirring in a dilute and cooled H2O2 solution. This formed V(V) peroxide complexes, which decompose at elevated temperature to give a 0.0175 M H6V10O28 solution. This solution was stabilized by adding a calculated amount of H3PO4 to give a more stable 0.0125 M H9PV14O42 solution. Since the H9PV14O42 solution occupied a large volume, its synthesis was performed three times in a 300-L reactor. In the main 500-L reactor, MoO3 was dissolved in water with stirring, while adding the remaining portion of H3PO4. The resulting mixture was evaporated, gradually introducing all of the previously obtained portions of the dilute H9PV14O42 solution. The resulting HPA-7′ solution was evaporated to ∼100 L and filtered twice, separating the insignificant amount of the precipitate. The filtered solution was again evaporated to 50 L, and a calculated amount of PdCl2 was added to it while stirring at 70–80°C. A total of 27 lots of the (Pd + 0.25 M HPA-7′) catalyst with a total volume of 1350 L were obtained. All apparatuses of the pilot industrial unit for MEK synthesis were filled with this catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. BE Patent 828603, 1975.

  2. Smidt, J. and Krekeler, H., Hydrocarbon Process. Pet. Refin., 1963, vol. 42, no. 7, pp. 149–152.

    Google Scholar 

  3. Kozik, B.L., Pestrikov, S.V., and Savel’ev, A.P., Khim. Tekhnol. Topl. Masel, 1963, no. 11, pp. 11–15.

    Google Scholar 

  4. RF Patent 2230612, Izobreteniya, 2004, no. 17, part II, p. 389.

  5. Zhizhina, E.G., Simonova, M.V., Odyakov, V.F., and Matveev, K.I., Appl. Catal., A, 2007, vol. 319, pp. 91–97.

    Article  CAS  Google Scholar 

  6. Zhizhina, E.G., Odyakov, V.F., and Simonova, M.V., Kinet. Catal., 2008, vol. 49, no. 6, pp. 773–781.

    Article  CAS  Google Scholar 

  7. Odyakov, V.F. and Matveev, K.I., Zh. Neorg. Khim., 1997, vol. 42, no. 5, pp. 718–720.

    CAS  Google Scholar 

  8. Odyakov, V.F., Zhizhina, E.G., Maksimovskaya, R.I., and Matveev, K.I., Zh. Neorg. Khim., 1998, vol. 43, no. 9, pp. 1451–1455.

    CAS  Google Scholar 

  9. Odyakov, V.F. and Matveev, K.I., USSR Inventor’s Certificate no. 1782934, Byull. Izobret., 1992, no. 33, p. 86.

    Google Scholar 

  10. Odyakov, V.F., Zhizhina, E.G., Maksimovskaya, R.I., and Matveev, K.I., Kinet. Katal., 1995, vol. 36, no. 5, pp. 795–800.

    Google Scholar 

  11. Novyi spravochnik khimika i tekhnologa. Osnovnye svoistva neorganicheskikh, organicheskikh i elementoorganicheskikh soedinenii (New Chemical Engineer’s Handbook: Basic Properties of Inorganic, Organic, and Elementoorganic Compounds), Skvortsov, N.K., Ed., St. Petersburg: NPO Mir i sem’ya, 2002.

    Google Scholar 

  12. Odyakov, V.F., Zhizhina, E.G., and Matveev, K.I., J. Mol. Catal. A: Chem., 2000, vol. 158, no. 1, pp. 453–456.

    Article  CAS  Google Scholar 

  13. Standard Potentials in Aqueous Solution, Bard, R., Parsons, J., and Jordan, J., Eds., New York: Marcel Dekker, 1985.

    Google Scholar 

  14. Odyakov, V.F., Zhizhina, E.G., and Maksimovskaya, R.I., Appl. Catal., A, 2008, vol. 342, nos. 1–2, pp. 126–130.

    Article  CAS  Google Scholar 

  15. Zhizhina, E.G. and Odyakov, V.F., React. Kinet. Catal. Lett., 2008, vol. 95, no. 2, pp. 301–312.

    Article  CAS  Google Scholar 

  16. Zhizhina, E.G. and Odyakov, V.F., Appl. Catal., A, 2009, vol. 358, no. 2, pp. 254–258.

    Article  CAS  Google Scholar 

  17. Matveev, K.I., Zhizhina, E.G., Odyakov, V.F., and Parmon, V.N., Catal. Ind., 2014, vol. 6, no. 3, pp. 202–211.

    Article  Google Scholar 

  18. Howarth, O.W. and Hunt, J.R., J. Chem. Soc., Dalton Trans., 1979, no. 9, pp. 1388–1391.

    Google Scholar 

  19. Alonso, B. and Livage, J., J. Solid State Chem., 1999, vol. 148, no. 1, pp. 16–19.

    Article  CAS  Google Scholar 

  20. Dean, G.A., Can. J. Chem., 1961, vol. 39, no. 6, pp. 1174–1183.

    Article  CAS  Google Scholar 

  21. Jahr, K.F. and Preuss, F., Chem. Ber., 1965, vol. 98, no. 10, pp. 3297–3302.

    Article  CAS  Google Scholar 

  22. Meyer, J., Z. Anorg. Allg. Chem., 1927, vol. 161, pp. 321–336.

    Article  CAS  Google Scholar 

  23. Novyi spravochnik khimika i tekhnologa. Khimicheskoe ravnovesie. Svoistva rastvorov (New Chemical Engineer’s Handbook: Chemical Equilibrium and Properties of Solutions), St. Petersburg: NPO Professional, 2004.

  24. Aoshima, A. and Yamaguchi, T., Nippon Kagaku Kaishi, 1987, no. 6. pp. 969–975.

    Google Scholar 

  25. FRG Patent 2722375, Chem. Abstr., 1978, vol. 88, no. 20, 142283k.

    Google Scholar 

  26. Maksimov, G.M., Molchanov, V.V., and Goidin, V.V., Khim. Prom-st., 1997, no. 7, pp. 507–509.

    Google Scholar 

  27. Molchanov, V.V., Maksimov, G.M., Maksimovskaya, R.I., Goidin, V.V., and Buyanov, R.A., Inorg. Mater., 2003, vol. 39, no. 7, pp. 687–693.

    Article  CAS  Google Scholar 

  28. Fontenot, C.J., Wiench, J.W., Pruski, M., and Schrader, G.L., J. Phys. Chem. B, 2000, vol. 104, no. 49, pp. 11622–11631.

    Article  CAS  Google Scholar 

  29. Odyakov, V.F. and Zhizhina, E.G., Russ. J. Inorg. Chem., 2009, vol. 54, no. 3, pp. 361–367.

    Article  Google Scholar 

  30. Livage, J., Coord. Chem. Rev., 1998, vols. 178–180, part 2, pp. 999–1018.

    Article  Google Scholar 

  31. Atlamsani, A., Ziyad, M., and Bregeault, J.M., J. Chim. Phys. Phys.-Chim. Biol., 1995, vol. 92, nos. 7–8, pp. 1344–1364.

    CAS  Google Scholar 

  32. Odyakov, V.F., Zhizhina, E.G., and Matveev, K.I., Katal. Prom-sti, 2007, no. 4, pp. 19–25.

    Google Scholar 

  33. Odyakov, V.F. and Zhizhina, E.G., Kinet. Catal., 2011, vol. 52, no. 6. pp. 828–834.

    Article  CAS  Google Scholar 

  34. Zhizhina, E.G., Simonova, M.V., Odyakov, V.F., and Matveev, K.I., Katal. Prom-sti, 2005, no. 2, pp. 17–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Odyakov.

Additional information

Original Russian Text © V.F. Odyakov, E.G. Zhizhina, K.I. Matveev, V.N. Parmon, 2015, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odyakov, V.F., Zhizhina, E.G., Matveev, K.I. et al. Homogeneous catalysts of redox reactions based on heteropoly acid solutions. II. Synthesis of catalyst for pilot industrial production of methylethylketone. Catal. Ind. 7, 111–118 (2015). https://doi.org/10.1134/S2070050415020087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050415020087

Keywords

Navigation