Advertisement

Catalysis in Industry

, Volume 6, Issue 4, pp 273–277 | Cite as

One-pot process for preparing substituted anthraquinones via diene synthesis in the presence of solutions of Mo-V-P heteropoly acids

  • L. L. Gogin
  • E. G. Zhizhina
Catalysis in Chemical and Petrochemical Industry
  • 38 Downloads

Abstract

The acid catalyzed condensation of substituted 1,3-butadienes with para-quinones and the oxidation of the resulting adducts can be conducted as one operation using aqueous solutions of Mo-V-P heteropoly acids (HPAs) of the general composition H a P z Mo y V x O b . Being strong Brønsted acids and at the same time reverse oxidizers, these solutions have bifunctional catalytic properties. The condensation of 1,4-naphthoquinone (NQ) with 1,3-butadiene in solutions of high-vanadium HPAs with the molecular formulas H15P4Mo18V7O89 and H17P3Mo16V10O89 using a water-miscible organic solvents (acetone and 1,4-dioxane) gives 9,10-anthraquinone (AQ) with yields of 70% and purities of up to 97% upon the complete conversion of NQ. The reaction between NQ and substituted 1,3-butadienes under similar conditions allows us to obtain substituted anthraquinones with yields of up to 90% and purities of up to 99%. The catalysts are regenerated with oxygen in a separate stage and used multiple times.

Keywords

anthraquinones heteropoly acids diene synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polotnyuk, O.-V.Ya., Katal. Prom-sti, 2013, no. 5, p. 59.Google Scholar
  2. 2.
    Anthraquinone Dyes and Intermediates, Ullmann’s Encyclopedia of Industrial Chemistry, 2007, vol. A.Google Scholar
  3. 3.
    Anthraquinone, Kirk-Othmer Encyclopedia of Chemical Technology, 5th Ed, 2006, vol. 2.Google Scholar
  4. 4.
    Chang, J.B., Yuk, S.B., Park, J.S., and Kim, J.P., Dyes Pigm., 2012, vol. 98, no. 1, p. 737.CrossRefGoogle Scholar
  5. 5.
    Valim, R.B., Reis, R.M., Castro, P.S., Lima, A.S., Rocha, R.S., Bertotti, M., and Lanza, M.R.V., Carbon, 2013, vol. 61, p. 236.CrossRefGoogle Scholar
  6. 6.
    Abdel-Hamid, A.M., Solbiati, J.O., and Cann, I.K.O., Adv. Appl. Microbiol., 2013, vol. 82, p. 1.CrossRefGoogle Scholar
  7. 7.
    Zhang, C. and Kim, S.K., Adv. Food Nutr. Res., 2012, vol. 65, p. 415.CrossRefGoogle Scholar
  8. 8.
    Çldiran, Z., Deniz, A.R., Coskun, M., Aydogan, S., Yesildaz, A., and Ekinei, D., J. Alloys Compd., 2014, vol. 584, p. 652.CrossRefGoogle Scholar
  9. 9.
    KR Patent 2001004856, 2001.Google Scholar
  10. 10.
    KR 2000001821, 2000.Google Scholar
  11. 11.
    Organic Syntheses, 1940–1949, Coll. Vol. 3, Vols. 20–29.Google Scholar
  12. 12.
    Kozhevnikov, I.V., Chem. Rev., 1998, vol. 98, p. 171.CrossRefGoogle Scholar
  13. 13.
    Zhizhina, E.G., Simonova, M.V., Odyakov, V.F., and Matveev, K.I., Appl. Catal., A, 2007, vol. 319, p. 91.CrossRefGoogle Scholar
  14. 14.
    Zhizhina, E.G., Odyakov, V.F., and Simonova, M.V., Kinet. Catal., 2008, vol. 49, no. 6, p. 773.CrossRefGoogle Scholar
  15. 15.
    Zhizhina, E.G., Matveev, K.I., and Russkikh, V.V., Chem. Sustainable Dev., 2004, vol. 12, no. 1, p. 47.Google Scholar
  16. 16.
    Zhizhina, E.G., Simonova, M.V., Russkikh, V.V., and Matveev, K.I., Katal. Prom-sti, 2005, no. 1. p. 12.Google Scholar
  17. 17.
    Zhizhina, E.G. and Odyakov, V.F., ChemCatChem, 2012, vol. 4, no. 9, p. 1405.CrossRefGoogle Scholar
  18. 18.
    Gogin, L.L., Zhizhina, E.G., and Pai, Z.P., Chem. Sustainable Dev., 2013, vol. 21, no. 2, p. 123.Google Scholar
  19. 19.
    Kozhevnikov, I.V. and Matveev, K.I., Russ. Chem. Rev., 1982, vol. 51, no. 11, p. 1075.CrossRefGoogle Scholar
  20. 20.
    Weygand, K. and Hilgetag, G., Organisch-chemische Experimentierkunst, Hilgetag, G. and Martini, A., Eds., Leipzig: Johann Ambrosius Barth, 1964, 3rd ed.Google Scholar
  21. 21.
    Odyakov, V.F., Zhizhina, E.G., and Maksimovskaya, R.I., Appl. Catal., A, 2008, vol. 342, nos. 1–2, p. 126.CrossRefGoogle Scholar
  22. 22.
    Zhizhina, E.G., Odyakov, V.F., and Matveev, K.I., Eur. J. Inorg. Chem., 1999, no. 6, p. 1009.Google Scholar
  23. 23.
    Selling, A., Andersson, I., Grate, J.H., and Pettersson, L., Eur. J. Inorg. Chem., 2000, no. 7, p. 1509.Google Scholar
  24. 24.
    Zhizhina, E.G., Simonova, M.V., Odyakov, V.F., and Matveev, K.I., Chem. Sustainable Dev., 2004, vol. 12, no. 6, p. 683.Google Scholar
  25. 25.
    Lynch, M., Chem.-Biol. Interact., 2001, vols. 135–136, p. 155.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations