Advertisement

Catalysis in Industry

, Volume 6, Issue 3, pp 182–189 | Cite as

Effect of the conditions of thermal reduction on the formation, stability, and catalytic properties of polymer-stabilized palladium nanoparticles in the selective hydrogenation of acetylene alcohols

  • A. V. Bykov
  • L. Zh. Nikoshvili
  • N. A. Lyubimova
  • K. P. Komar
Catalysis in Chemical and Petrochemical Industry

Abstract

This work is dedicated to studying the thermal degradation of palladium acetate in commercial MN270 hypercrosslinked polystyrene in the temperature range of 200 to 325°C by means of TGA and XPS. It is shown that palladium acetate distributed in hypercrosslinked polystyrene is destroyed with the formation of palladium metal at lower temperatures than the pure salt powder. It is established that the formation and stabilization of Pd7-Pd10 palladium clusters and their partial aggregation with the formation of palladium nanoparticles occur in the course of destruction. Catalytic testing of the resulting systems in selective triple bond hydrogenation in dimethylethynylcarbinol in a toluene solution at 90°C reveals their considerable superiority in activity and selectivity over commercial Lindlar catalyst: a more than twofold increase in TOF at 97.8% selectivity.

Keywords

palladium acetate palladium clusters hypercrosslinked polystyrene thermal decomposition XPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Principles and Practice of Heterogeneous Catalysis, Thomas, J.M. and Thomas, W.J., Eds., Weinheim: VCH, 1997.Google Scholar
  2. 2.
    Chen, M.S. and Goodman, D.W., Science, 2004, vol. 306, p. 252.CrossRefGoogle Scholar
  3. 3.
    Freund, H.-J., Top. Catal., 2008, vol. 48, p. 137.CrossRefGoogle Scholar
  4. 4.
    Frank, M. and Baumer, M., Phys. Chem. Chem. Phys., 2000, no. 2, p. 3723.Google Scholar
  5. 5.
    Baron, M., Bondarchuk, O., Stacchiola, D., Shaikhutdinov, S., and Freund, H.J., J. Phys. Chem. C, 2009, vol. 113, p. 6042.CrossRefGoogle Scholar
  6. 6.
    Eppler, A.S., Rupprechter, G., Guczi, L., and Somorjai, G.A., J. Phys. Chem. B, 1997, vol. 101, p. 9973.CrossRefGoogle Scholar
  7. 7.
    Johánek, V., Laurin, M., Hoffmann, J., Schauermann, S., Grant, A.W., Kasemo, B., Libuda, J., and Freund, H.J., Surf. Sci., 2004, vol. 561, nos. 2–3. p. L218.CrossRefGoogle Scholar
  8. 8.
    Somorjai, G.A., Appl. Surf. Sci., 1997, vols. 121–122, p. 1.CrossRefGoogle Scholar
  9. 9.
    Song, Z., Hrbek, J., and Osgood, R., Nano Lett., 2005, vol. 5, p. 1327.CrossRefGoogle Scholar
  10. 10.
    Gross, E., Asscher, M., Lundwall, M., and Goodman, D.W., J. Phys. Chem. C, 2007, vol. 111, p. 16197.CrossRefGoogle Scholar
  11. 11.
    King, J.S., Wittstock, A., Biener, J., Kucheyev, S.O., Wang, Y.M., Baumann, T.F., Giri, S., Hamza, A.V., Baeumer, M., and Bent, S.F., Nano Lett., 2008, vol. 8, no. 8, p. 2405.CrossRefGoogle Scholar
  12. 12.
    Benz, L., Tong, X., Kemper, P., Lilach, Y., Kolmakov, A., Metiu, H., Bowers, M.T., and Buratto, S.K., J. Chem. Phys., 2005, vol. 122, p. 081102.CrossRefGoogle Scholar
  13. 13.
    Tong, X., Benz, L., Kemper, P., Metiu, H., Bowers, M.T., and Buratto, S.K., J. Am. Chem. Soc., 2005, vol. 127, p. 13516.CrossRefGoogle Scholar
  14. 14.
    Baeck, S.H., Jaramillo, T.F., Stucky, G.D., and McFarland, E.W., Nano Lett., 2002, vol. 2, no. 8, p. 831.CrossRefGoogle Scholar
  15. 15.
    Baeck, S.H., Jaramillo, T.F., Kleinman-Shwarsetein, A., and McFarland, E.W., Meas. Sci. Technol., 2005, vol. 16, p. 54.CrossRefGoogle Scholar
  16. 16.
    Zoval, J.V., Lee, J., Gorer, S., and Penner, R.M., J. Phys. Chem. B, 1998, vol. 102, p. 1166.CrossRefGoogle Scholar
  17. 17.
    Stiger, R.M., Gorer, S., Craft, B., and Penner, R.M., Langmuir, 1999, vol. 15, p. 790.CrossRefGoogle Scholar
  18. 18.
    Zhang, L., Fang, Z., Zhao, G.C., and Wei, X.W., Int. J. Electrochem. Sci., 2008, vol. 3, p. 746.Google Scholar
  19. 19.
    Narayanan, R. and El-Sayed, M.A., J. Phys. Chem. B, 2004, vol. 108, p. 5726.CrossRefGoogle Scholar
  20. 20.
    Yamamuro, S. and Sumiyama, K., Chem. Phys. Lett., 2006, vol. 418, nos. 1–3, p. 166.CrossRefGoogle Scholar
  21. 21.
    Haruta, M., Catal. Today, 1997, vol. 36, p. 153.CrossRefGoogle Scholar
  22. 22.
    Hutchings, G.J., Gold Bull., 2004, vol. 37, p. 3.CrossRefGoogle Scholar
  23. 23.
    Akita, T., Okumura, M., Tanaka, K., Tsubota, S., and Haruta, M., J. Electron Microsc., 2003, vol. 52, p. 119.CrossRefGoogle Scholar
  24. 24.
    Ichikawa M., Advances in Catalysis, Eley, H.P.D.D. and Weisz, P.B., Eds., San Diego: Academic Press, 1992.Google Scholar
  25. 25.
    Cuenya, B.R., Thin Solid Films, 2010, vol. 518, no. 12, p. 3127.CrossRefGoogle Scholar
  26. 26.
    Kiwi-Minsker, L. and Crespo-Quesada, M., Top. Catal., 2012, vol. 55, p. 486.CrossRefGoogle Scholar
  27. 27.
    Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.-D., Chem. Phys., 2000, no. 262, p. 189.Google Scholar
  28. 28.
    Haruta, M., Kobayashi, T., Sano, H., and Yamada, N., Chem. Lett., 1987, vol. 16, no. 2, p. 405.CrossRefGoogle Scholar
  29. 29.
    Haruta, M., J. New Mater. Electrochem. Syst., 2004, vol. 7, p. 163.Google Scholar
  30. 30.
    Valden, M., Lai, X., and Goodman, D.W., Science, 1998, vol. 281, p. 1647.CrossRefGoogle Scholar
  31. 31.
    Jaramillo, T.F., Baeck, S.H., Roldan, CuenyaB., and McFarland, E.W., J. Am. Chem. Soc., 2003, vol. 125, p. 7148.CrossRefGoogle Scholar
  32. 32.
    Campbell, C.T., Parker, S.C., and Starr, D.E., Science, 2002, vol. 298, p. 811.CrossRefGoogle Scholar
  33. 33.
    Lee, S., Fan, C., Wu, T., and Anderson, S., J. Am. Chem. Soc., 2004, vol. 126, p. 5682.CrossRefGoogle Scholar
  34. 34.
    Shaikhutdinov, S.K., Meyer, R., Naschitzki, M., Baumer, M., and Freund, H.J., Catal. Lett., 2003, vol. 86, p. 211.CrossRefGoogle Scholar
  35. 35.
    Bronstein, L.M., Goerigk, G., Kostylev, M., Pink, M., Khotina, I.A., Valetsky, P.M., Matveeva, V.G., Sulman, E.M., Sulman, M.G., Bykov, A.V., Lakina, N.V., and Spontak, R.J., J. Phys. Chem. B, 2004, vol. 108, p. 18234.CrossRefGoogle Scholar
  36. 36.
    Bronstein, L.M., Matveeva, V.G., and Sulman, E.M., Nanoparticulate Catalysts Based on Nanostructured Polymers: Nanoparticles and Catalysis, Astruc, D., Ed., Weinheim: Wiley-VCH, 2007, p. 93.Google Scholar
  37. 37.
    Bronshtein, L.M., Sidorov, S.N., and Valetskii, P.M., Russ. Chem. Rev., 2004, vol. 73, no. 5, p. 501.CrossRefGoogle Scholar
  38. 38.
    Semagina, N.V., Sulman, E.M., Matveeva, V.G., Bykov, A.V., Sidorov, S.N., Dubrovina, L.V., Valetsky, P.M., Kiselyova, O.I., Khokhlov, A.R., Stein, B., and Bronstein, L.M., J. Molec. Catal. A, 2004, vol. 208, nos. 1–2, p. 273.CrossRefGoogle Scholar
  39. 39.
    Croy, J.R., Mostafa, S., Hickman, L., Heinrich, H., and Cuenya, B.R., J. Appl. Catal. A, 2008, vol. 350, no. 2, p. 207.CrossRefGoogle Scholar
  40. 40.
    Ono, L.K., Sudfeld, D., and Roldan Cuenya, B., Surf. Sci., 2006, vol. 600, no. 23, p. 5041.CrossRefGoogle Scholar
  41. 41.
    Wu, T., Kaden, W.E., Kunkel, W.A., and Anderson, S.L., Surf. Sci., 2009, vol. 603, no. 17, p. 2764.CrossRefGoogle Scholar
  42. 42.
    Shaikhutdinov, S., Heemeier, M., Hoffmann, J., Meusel, I., Richter, B., Baumer, M., Kuhlenbeck, H., Libuda, J., Freund, H.-J., Oldman, R., Jackson, S.D., Konvicka, C., Schmid, M., and Varga, P., Surf. Sci., 2002, vol. 501, no. 3, p. 270.CrossRefGoogle Scholar
  43. 43.
    Penner, S., Bera, P., Pedersen, S., Ngo, L.T., Harris, J.J.W., and Charles, T., Campbell, J. Phys. Chem. B, 2006, vol. 110, p. 24577.CrossRefGoogle Scholar
  44. 44.
    Wertheim, G.K., DiCenzo, S.B., and Youngquist, S.E., Phys. Rev. Lett., 1983, vol. 51, p. 2310.CrossRefGoogle Scholar
  45. 45.
    Wertheim, G.K. and DiCenzo, S.B., Phys. Rev., 1988, vol. 37, p. 844.CrossRefGoogle Scholar
  46. 46.
    Kuhrt, C. and Harsdorff, M., Surf. Sci., 1991, vol. 245, nos. 1–2, p. 173.CrossRefGoogle Scholar
  47. 47.
    Sulman, E.M., Nikoshvili, L.Zh., Matveeva, V.G., Tyamina, I.Yu., Sidorov, A.I., Bykov, A.V., Demidenko, G.N., Stein, B.D., and Bronstein, L.M., Top. Catal., 2012, vol. 55, p. 492.CrossRefGoogle Scholar
  48. 48.
    Briggs, D., Surface Analysis of Polymers by XPS and Static SIMS, Cambridge: Cambridge Univ. Press, 1998.CrossRefGoogle Scholar
  49. 49.
    Penner, N.A. and Nesterenko, P.N., Anal. Commun., 1999, vol. 36, p. 199.CrossRefGoogle Scholar
  50. 50.
    NIST X-ray Photoelectron Spectroscopy Database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003). http://srdata.nist.gov/xps.
  51. 51.
    Doluda, V.Y., Tsvetkova, I.B., Bykov, A.V., Matveeva, V.G., Sidorov, A.I., Sulman, M.G., Valetsky, P.M., Stein, B.D., Sulman, E.M., and Bronstein, L.M., Green Process Synt., 2013, vol. 2, p. 25.Google Scholar
  52. 52.
    Matveeva, V.G., Valetskii, P.M., Sul’man, M.G., Bronshtein, L.M., Sidorov, A.I., Doluda, V.Yu., Gavrilenko, A.V., Nikoshvili, L.Zh., Bykov, A.V., Grigor’ev, M.V., and Sul’man, E.M., Catal. Industry, 2011, vol. 3, no. 3, p. 260.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Bykov
    • 1
  • L. Zh. Nikoshvili
    • 1
  • N. A. Lyubimova
    • 1
  • K. P. Komar
    • 1
  1. 1.Tver State Technical UniversityTverRussia

Personalised recommendations