Skip to main content
Log in

Effect of the conditions of thermal reduction on the formation, stability, and catalytic properties of polymer-stabilized palladium nanoparticles in the selective hydrogenation of acetylene alcohols

  • Catalysis in Chemical and Petrochemical Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

This work is dedicated to studying the thermal degradation of palladium acetate in commercial MN270 hypercrosslinked polystyrene in the temperature range of 200 to 325°C by means of TGA and XPS. It is shown that palladium acetate distributed in hypercrosslinked polystyrene is destroyed with the formation of palladium metal at lower temperatures than the pure salt powder. It is established that the formation and stabilization of Pd7-Pd10 palladium clusters and their partial aggregation with the formation of palladium nanoparticles occur in the course of destruction. Catalytic testing of the resulting systems in selective triple bond hydrogenation in dimethylethynylcarbinol in a toluene solution at 90°C reveals their considerable superiority in activity and selectivity over commercial Lindlar catalyst: a more than twofold increase in TOF at 97.8% selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Principles and Practice of Heterogeneous Catalysis, Thomas, J.M. and Thomas, W.J., Eds., Weinheim: VCH, 1997.

    Google Scholar 

  2. Chen, M.S. and Goodman, D.W., Science, 2004, vol. 306, p. 252.

    Article  CAS  Google Scholar 

  3. Freund, H.-J., Top. Catal., 2008, vol. 48, p. 137.

    Article  CAS  Google Scholar 

  4. Frank, M. and Baumer, M., Phys. Chem. Chem. Phys., 2000, no. 2, p. 3723.

    Google Scholar 

  5. Baron, M., Bondarchuk, O., Stacchiola, D., Shaikhutdinov, S., and Freund, H.J., J. Phys. Chem. C, 2009, vol. 113, p. 6042.

    Article  CAS  Google Scholar 

  6. Eppler, A.S., Rupprechter, G., Guczi, L., and Somorjai, G.A., J. Phys. Chem. B, 1997, vol. 101, p. 9973.

    Article  CAS  Google Scholar 

  7. Johánek, V., Laurin, M., Hoffmann, J., Schauermann, S., Grant, A.W., Kasemo, B., Libuda, J., and Freund, H.J., Surf. Sci., 2004, vol. 561, nos. 2–3. p. L218.

    Article  Google Scholar 

  8. Somorjai, G.A., Appl. Surf. Sci., 1997, vols. 121–122, p. 1.

    Article  Google Scholar 

  9. Song, Z., Hrbek, J., and Osgood, R., Nano Lett., 2005, vol. 5, p. 1327.

    Article  CAS  Google Scholar 

  10. Gross, E., Asscher, M., Lundwall, M., and Goodman, D.W., J. Phys. Chem. C, 2007, vol. 111, p. 16197.

    Article  CAS  Google Scholar 

  11. King, J.S., Wittstock, A., Biener, J., Kucheyev, S.O., Wang, Y.M., Baumann, T.F., Giri, S., Hamza, A.V., Baeumer, M., and Bent, S.F., Nano Lett., 2008, vol. 8, no. 8, p. 2405.

    Article  CAS  Google Scholar 

  12. Benz, L., Tong, X., Kemper, P., Lilach, Y., Kolmakov, A., Metiu, H., Bowers, M.T., and Buratto, S.K., J. Chem. Phys., 2005, vol. 122, p. 081102.

    Article  Google Scholar 

  13. Tong, X., Benz, L., Kemper, P., Metiu, H., Bowers, M.T., and Buratto, S.K., J. Am. Chem. Soc., 2005, vol. 127, p. 13516.

    Article  CAS  Google Scholar 

  14. Baeck, S.H., Jaramillo, T.F., Stucky, G.D., and McFarland, E.W., Nano Lett., 2002, vol. 2, no. 8, p. 831.

    Article  CAS  Google Scholar 

  15. Baeck, S.H., Jaramillo, T.F., Kleinman-Shwarsetein, A., and McFarland, E.W., Meas. Sci. Technol., 2005, vol. 16, p. 54.

    Article  CAS  Google Scholar 

  16. Zoval, J.V., Lee, J., Gorer, S., and Penner, R.M., J. Phys. Chem. B, 1998, vol. 102, p. 1166.

    Article  CAS  Google Scholar 

  17. Stiger, R.M., Gorer, S., Craft, B., and Penner, R.M., Langmuir, 1999, vol. 15, p. 790.

    Article  CAS  Google Scholar 

  18. Zhang, L., Fang, Z., Zhao, G.C., and Wei, X.W., Int. J. Electrochem. Sci., 2008, vol. 3, p. 746.

    Google Scholar 

  19. Narayanan, R. and El-Sayed, M.A., J. Phys. Chem. B, 2004, vol. 108, p. 5726.

    Article  CAS  Google Scholar 

  20. Yamamuro, S. and Sumiyama, K., Chem. Phys. Lett., 2006, vol. 418, nos. 1–3, p. 166.

    Article  CAS  Google Scholar 

  21. Haruta, M., Catal. Today, 1997, vol. 36, p. 153.

    Article  CAS  Google Scholar 

  22. Hutchings, G.J., Gold Bull., 2004, vol. 37, p. 3.

    Article  CAS  Google Scholar 

  23. Akita, T., Okumura, M., Tanaka, K., Tsubota, S., and Haruta, M., J. Electron Microsc., 2003, vol. 52, p. 119.

    Article  CAS  Google Scholar 

  24. Ichikawa M., Advances in Catalysis, Eley, H.P.D.D. and Weisz, P.B., Eds., San Diego: Academic Press, 1992.

  25. Cuenya, B.R., Thin Solid Films, 2010, vol. 518, no. 12, p. 3127.

    Article  CAS  Google Scholar 

  26. Kiwi-Minsker, L. and Crespo-Quesada, M., Top. Catal., 2012, vol. 55, p. 486.

    Article  CAS  Google Scholar 

  27. Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.-D., Chem. Phys., 2000, no. 262, p. 189.

    Google Scholar 

  28. Haruta, M., Kobayashi, T., Sano, H., and Yamada, N., Chem. Lett., 1987, vol. 16, no. 2, p. 405.

    Article  Google Scholar 

  29. Haruta, M., J. New Mater. Electrochem. Syst., 2004, vol. 7, p. 163.

    CAS  Google Scholar 

  30. Valden, M., Lai, X., and Goodman, D.W., Science, 1998, vol. 281, p. 1647.

    Article  CAS  Google Scholar 

  31. Jaramillo, T.F., Baeck, S.H., Roldan, CuenyaB., and McFarland, E.W., J. Am. Chem. Soc., 2003, vol. 125, p. 7148.

    Article  CAS  Google Scholar 

  32. Campbell, C.T., Parker, S.C., and Starr, D.E., Science, 2002, vol. 298, p. 811.

    Article  CAS  Google Scholar 

  33. Lee, S., Fan, C., Wu, T., and Anderson, S., J. Am. Chem. Soc., 2004, vol. 126, p. 5682.

    Article  CAS  Google Scholar 

  34. Shaikhutdinov, S.K., Meyer, R., Naschitzki, M., Baumer, M., and Freund, H.J., Catal. Lett., 2003, vol. 86, p. 211.

    Article  CAS  Google Scholar 

  35. Bronstein, L.M., Goerigk, G., Kostylev, M., Pink, M., Khotina, I.A., Valetsky, P.M., Matveeva, V.G., Sulman, E.M., Sulman, M.G., Bykov, A.V., Lakina, N.V., and Spontak, R.J., J. Phys. Chem. B, 2004, vol. 108, p. 18234.

    Article  CAS  Google Scholar 

  36. Bronstein, L.M., Matveeva, V.G., and Sulman, E.M., Nanoparticulate Catalysts Based on Nanostructured Polymers: Nanoparticles and Catalysis, Astruc, D., Ed., Weinheim: Wiley-VCH, 2007, p. 93.

  37. Bronshtein, L.M., Sidorov, S.N., and Valetskii, P.M., Russ. Chem. Rev., 2004, vol. 73, no. 5, p. 501.

    Article  Google Scholar 

  38. Semagina, N.V., Sulman, E.M., Matveeva, V.G., Bykov, A.V., Sidorov, S.N., Dubrovina, L.V., Valetsky, P.M., Kiselyova, O.I., Khokhlov, A.R., Stein, B., and Bronstein, L.M., J. Molec. Catal. A, 2004, vol. 208, nos. 1–2, p. 273.

    Article  CAS  Google Scholar 

  39. Croy, J.R., Mostafa, S., Hickman, L., Heinrich, H., and Cuenya, B.R., J. Appl. Catal. A, 2008, vol. 350, no. 2, p. 207.

    Article  CAS  Google Scholar 

  40. Ono, L.K., Sudfeld, D., and Roldan Cuenya, B., Surf. Sci., 2006, vol. 600, no. 23, p. 5041.

    Article  CAS  Google Scholar 

  41. Wu, T., Kaden, W.E., Kunkel, W.A., and Anderson, S.L., Surf. Sci., 2009, vol. 603, no. 17, p. 2764.

    Article  CAS  Google Scholar 

  42. Shaikhutdinov, S., Heemeier, M., Hoffmann, J., Meusel, I., Richter, B., Baumer, M., Kuhlenbeck, H., Libuda, J., Freund, H.-J., Oldman, R., Jackson, S.D., Konvicka, C., Schmid, M., and Varga, P., Surf. Sci., 2002, vol. 501, no. 3, p. 270.

    Article  CAS  Google Scholar 

  43. Penner, S., Bera, P., Pedersen, S., Ngo, L.T., Harris, J.J.W., and Charles, T., Campbell, J. Phys. Chem. B, 2006, vol. 110, p. 24577.

    Article  CAS  Google Scholar 

  44. Wertheim, G.K., DiCenzo, S.B., and Youngquist, S.E., Phys. Rev. Lett., 1983, vol. 51, p. 2310.

    Article  CAS  Google Scholar 

  45. Wertheim, G.K. and DiCenzo, S.B., Phys. Rev., 1988, vol. 37, p. 844.

    Article  CAS  Google Scholar 

  46. Kuhrt, C. and Harsdorff, M., Surf. Sci., 1991, vol. 245, nos. 1–2, p. 173.

    Article  CAS  Google Scholar 

  47. Sulman, E.M., Nikoshvili, L.Zh., Matveeva, V.G., Tyamina, I.Yu., Sidorov, A.I., Bykov, A.V., Demidenko, G.N., Stein, B.D., and Bronstein, L.M., Top. Catal., 2012, vol. 55, p. 492.

    Article  CAS  Google Scholar 

  48. Briggs, D., Surface Analysis of Polymers by XPS and Static SIMS, Cambridge: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  49. Penner, N.A. and Nesterenko, P.N., Anal. Commun., 1999, vol. 36, p. 199.

    Article  CAS  Google Scholar 

  50. NIST X-ray Photoelectron Spectroscopy Database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003). http://srdata.nist.gov/xps.

  51. Doluda, V.Y., Tsvetkova, I.B., Bykov, A.V., Matveeva, V.G., Sidorov, A.I., Sulman, M.G., Valetsky, P.M., Stein, B.D., Sulman, E.M., and Bronstein, L.M., Green Process Synt., 2013, vol. 2, p. 25.

    CAS  Google Scholar 

  52. Matveeva, V.G., Valetskii, P.M., Sul’man, M.G., Bronshtein, L.M., Sidorov, A.I., Doluda, V.Yu., Gavrilenko, A.V., Nikoshvili, L.Zh., Bykov, A.V., Grigor’ev, M.V., and Sul’man, E.M., Catal. Industry, 2011, vol. 3, no. 3, p. 260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bykov.

Additional information

Original Russian Text © A.V. Bykov, L.Zh. Nikoshvili, N.A. Lyubimova, K.P. Komar, 2014, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.V., Nikoshvili, L.Z., Lyubimova, N.A. et al. Effect of the conditions of thermal reduction on the formation, stability, and catalytic properties of polymer-stabilized palladium nanoparticles in the selective hydrogenation of acetylene alcohols. Catal. Ind. 6, 182–189 (2014). https://doi.org/10.1134/S2070050414030064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050414030064

Keywords

Navigation