Advertisement

Catalysis in Industry

, Volume 6, Issue 2, pp 143–149 | Cite as

Liquid-phase synthesis of methanol using industrial copper-zinc catalyst

  • A. V. Bykov
  • M. A. Rubin
  • M. G. Sul’man
  • E. M. Sul’man
Biocatalysis

Abstract

The industrial copper-zinc catalyst MEGAMAX®-phase synthesis of methanol was tested under the conditions of a liquid-phase process while varying the pressure (0.5–7.0 MPa) and the gas mixture flow rate (40–400 mLN/min). The catalyst was shown to have high activity and selectivity in the synthesis of methanol. The best result (730 g(methanol)/kg(cat) h−1 and selectivity 99.2%) was obtained under reaction conditions of 2.0 MPa, 240°C, H2: CO: CO2: N2 = 70.5: 17.9: 6.5: 5.1, and reaction time 3 h. The concentration of methane by-product increased at gas mixture pressures over 3.0 MPa, lowering the selectivity of the process with respect to methanol. Trace amounts of ethane and water were found in addition to methane. Dimethyl ether, a typical by-product of methanol synthesis, was missing from the vapor-gas mixture over the range of pressures. The results from this study indicate that the MEGAMAX® can be used in the liquid-phase synthesis of methanol.

Keywords

liquid-phase synthesis of methanol industrial copper-zinc catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hu, B. and Fujimoto, K., Appl. Catal., A, 2008, vol. 346, pp. 174–178.CrossRefGoogle Scholar
  2. 2.
    Farsi, M. and Jahanmiri, A., Ind. Eng. Chem. Res., 2012, vol. 18, pp. 1088–1095.CrossRefGoogle Scholar
  3. 3.
    van der Laan, G.P., Beenackers, A.A.C.M., Ding, B., and Strikwerda, J.C., Catal. Today, 1999, vol. 48, pp. 93–100.CrossRefGoogle Scholar
  4. 4.
    Lee, S. and Sardesai, A., Top. Catal., 2005, vol. 32, pp. 197–207.CrossRefGoogle Scholar
  5. 5.
    Quinn, R., Dahl, T.A., and Toseland, B.A., Appl. Catal., A, 2004, vol. 272, pp. 61–68CrossRefGoogle Scholar
  6. 6.
    Karavaev, M.M., Leonov, V.E., Popov, I.G., and Shepelev, E.T., Tekhnologiya sinteticheskogo metanola (Technology of Synthetic Methanol), Moscow: Khimiya, 1984.Google Scholar
  7. 7.
    Rozovskii, A.Ya. and Lin, G.E., Teoreticheskie osnovy protsessa sinteza metanola (Theoretical Principles of Methanol Synthesis), Moscow: Khimiya, 1990.Google Scholar
  8. 8.
    Schimpf, S., Rittermeier, A., Zhang, X., Li, Z.-A., Spasova, M., van den Berg, M.W.E., Farle, M., Wang, Y., Fischer, R.A., and Muhler, M., Chem-CatChem, 2010, vol. 2, pp. 214–222.Google Scholar
  9. 9.
    Zhang, X., Zhong, L., Guo, Q., Fan, H., Zheng, H., and Xie, K., Fuel, 2010, vol. 89, pp. 1348–1352.CrossRefGoogle Scholar
  10. 10.
    Mabuse, H., Hagihara, K., Watanabe, T., and Saito, M., Energy Convers. Manage., 1997, vol. 38, pp. 437–442.CrossRefGoogle Scholar
  11. 11.
    Hagihara, K., Mabuse, H., Watanabe, T., and Saito, M., Catal. Today, 1997, vol. 36, pp. 33–37.CrossRefGoogle Scholar
  12. 12.
    Bochkarev, V.V., Optimizatsiya tekhnologicheskikh protsessov organicheskogo sinteza (Optimization of Organic Synthesis Processes), Tomsk: Tomsk Polytechn. Univ., 2010.Google Scholar
  13. 13.
    van der Laan, G.P., Beenackers, A.A.C.M., Ding, B., and Strikwerda, J.C., Catal. Today, 1999, vol. 48, pp. 93–100.CrossRefGoogle Scholar
  14. 14.
    Matsuda, T., Shizuta, M., Yoshizawa, J., and Kikuchi, E., Appl. Catal., A, 1995, vol. 125, pp. 293–302.CrossRefGoogle Scholar
  15. 15.
    Liawa, B.J. and Chenb, Y.Z., Appl. Catal., A, 2001, vol. 206, pp. 245–256.CrossRefGoogle Scholar
  16. 16.
    Setinc, M. and Levec, J., Chem. Eng. Sci., 1999, vol. 54, pp. 3577–3586.CrossRefGoogle Scholar
  17. 17.
    Hu, L., Wang, X., Li, X., Yu, G., Wang, F., and Yu, Z., Chem. Eng. Process., 2007, vol. 46, pp. 905–909.CrossRefGoogle Scholar
  18. 18.
    Barrandeguy, J., Chiavassa, D.L., Collins, S.E., Bonivardi, A.L., and Baltanás, M.A., J. Catal., 2002, vol. 211, pp. 252–264.CrossRefGoogle Scholar
  19. 19.
    Collins, S.E., Delgado, J.J., Mira, C., Calvino, J.J., Bernal, S., Chiavassa, D.L., Baltanas, M.A., and Bonivardi, A.L., J. Catal. 2012, vol. 292, pp. 90–98.CrossRefGoogle Scholar
  20. 20.
    Collins, S.E., Baltanás, M.A., and Bonivard, A.L., J. Catal., 2004, vol. 226, pp. 410–421.CrossRefGoogle Scholar
  21. 21.
    Ali, S.H. and Goodwin, J.G., J. Catal., 1997, vol. 171, pp. 339–344.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Bykov
    • 1
  • M. A. Rubin
    • 1
  • M. G. Sul’man
    • 1
  • E. M. Sul’man
    • 1
  1. 1.Faculty of Biotechnology and ChemistryTver State Technical UniversityTverRussia

Personalised recommendations