Advertisement

Catalysis in Industry

, Volume 6, Issue 1, pp 72–78 | Cite as

Trichoderma reesei endoglucanase IV: A new component of biocatalysts based on the cellulase complex of the fungus Penicillium verruculosum for hydrolysis of cellulose-containing biomass

  • O. V. Proskurina
  • O. G. Korotkova
  • A. M. Rozhkova
  • V. Yu. Matys
  • A. V. Koshelev
  • O. N. Okunev
  • V. A. Nemashkalov
  • O. A. Sinitsyna
  • V. V. Revin
  • A. P. Sinitsyn
Biocatalysis

Abstract

The problem of raising the efficiency of enzyme preparations catalyzing cellulose conversion is among the present-day technological challenges. Here, we report the enhancement of the hydrolytic capacity of cellulase preparations by introducing nonhydrolytic enzymes (polysaccharide monooxygenases) into the cellulolytic complex. An enzyme preparation with an increased hydrolytic capacity has been obtained from the recombinant strain of the fungus Penicillium verruculosum that carries the Trichoderma reesei endoglucanase IV gene. This method allows the efficiency of the cellulase complex to be increased by 20%.

Keywords

Penicillium verruculosum polysaccharide monooxygenases Trichoderma reesei endoglucanase IV enzyme preparation cellulase complex cellulose bioconversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malherbe, S. and Cloete, T.E., Rev. Environ. Sci. Bio/Technol., 2002, vol. 1, pp. 105–114.CrossRefGoogle Scholar
  2. 2.
    Jørgensen, H., Kristensen, J.B., and Felby, C., Biofuels, Bioprod. Biorefin., 2007, vol. 1, pp. 119–134.CrossRefGoogle Scholar
  3. 3.
    Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M., Bioresour. Technol., 2010, vol. 101, pp. 1570–1580.CrossRefGoogle Scholar
  4. 4.
    Kamm, B. and Kamm, M., Adv. Biochem. Eng./Biotechnol., 2007, vol. 105, pp. 175–204.CrossRefGoogle Scholar
  5. 5.
    Galbe, M., Sassner, P., Wingren, A., and Zacchi, G., Adv. Biochem. Eng./Biotechnol., 2007, vol. 108, pp. 303–327.CrossRefGoogle Scholar
  6. 6.
    Abramson, M., Shoseyov, O., and Shani, Z., Plant Sci., 2010, vol. 178, pp. 61–72.CrossRefGoogle Scholar
  7. 7.
    Gincy, M.M., Rajeev, K.S., Reeta, R.S., and Ashok, P., J. Sci. Ind. Res., 2008, vol. 67, pp. 898–907.Google Scholar
  8. 8.
    Banerjee, G., Car, S., Scott-Craig, J.S., Borrusch, M.S., Bongers, M., and Walton, J.D., Bioresour. Technol., 2010, vol. 101, pp. 9097–9105.CrossRefGoogle Scholar
  9. 9.
    Sygmund, C., Kracher, D., Scheiblbrandner, S., Zahma, K., Felice, A.K., Harreither, W., Kittl, R., and Ludwig, R., Appl. Environ. Microbiol., 2012, vol. 78, pp. 6161–6171.CrossRefGoogle Scholar
  10. 10.
    Mansfield, S.D., De Jong, E., and Saddler, J.N., Appl. Environ. Microbiol., 1997, vol. 63, pp. 3804–3809.Google Scholar
  11. 11.
    Harris, P.V., Welner, D., McFarland, K.C., Re, E., Poulsen, J.C.N., Brown, K., Salbo, R., Ding, H., Vlasenko, E., Merino, S., Xu, F., Cherry, J., Larsen, S., and Leggio, L.L., Biochemistry, 2010, vol. 49, pp. 3305–3316.CrossRefGoogle Scholar
  12. 12.
    Quinlana, R.J., Sweeneya, M.D., Leggio, L.L., Otten, H., Poulsen, J.C.N., Johansen, K.S., Krogh, K.B.R.M., Jørgensen, C.I., Tovborg, M., Anthonsen, A., Tryfona, T., Walter, C.P., Dupree, P., Xu, F., Davies, G.J., and Walton, P.H., Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 37, pp. 15079–15084.CrossRefGoogle Scholar
  13. 13.
    Beeson, W.T., Phillips, C.M., Cate, J.H.D., and Marletta, M.A., J. Am. Chem. Soc., 2012, vol. 134, pp. 890–892.CrossRefGoogle Scholar
  14. 14.
    Saloheimo, M., Nakari-Setala, T., Tenkanen, M., and Penttila, M., Eur. J. Biochem., 1997, vol. 249, pp. 584–591.CrossRefGoogle Scholar
  15. 15.
    Skomarovsky, A.A., Gusakov, A.V., Okunev, O.N., Solov’eva, I.V., Bubnova, T.V., Kondrat’eva, E.G., and Synitsyn, A.P., Appl. Biochem. Microbiol., 2005, vol. 41, pp. 182–184.CrossRefGoogle Scholar
  16. 16.
    Martins, L.F., Kolling, D., Camassola, M., Dillon, A.J., and Ramos, L.P., Bioresour. Technol., 2008, vol. 99, pp. 1417–1424.CrossRefGoogle Scholar
  17. 17.
    Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Metody issledovaniya i svoistva tsellyuloliticheskikh fermentov (Cellulolytic Enzymes: Methods of Characterization and Properties), Moscow: VINITI, 1990, vol. 25.Google Scholar
  18. 18.
    Bisswanger, H., Practical Enzymology, Weinheim: Wiley-VCH, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. V. Proskurina
    • 1
  • O. G. Korotkova
    • 2
  • A. M. Rozhkova
    • 2
  • V. Yu. Matys
    • 3
  • A. V. Koshelev
    • 3
  • O. N. Okunev
    • 3
  • V. A. Nemashkalov
    • 3
  • O. A. Sinitsyna
    • 1
  • V. V. Revin
    • 4
  • A. P. Sinitsyn
    • 1
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Bakh Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow oblastRussia
  4. 4.Mordovian State UniversitySaransk, Republic of MordoviaRussia

Personalised recommendations