Skip to main content
Log in

One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation

  • Catalysis in Petroleum Refining Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A one-dimensional heterogeneous model has been developed for a cat6alytic fixed-bed Fischer-Tropsch (FT) synthesis reactor in the isothermal granules approximation. The FT process has been simulated for a laboratory-scale reactor. The effects of the linear gas velocity and of the inner diameter of the reactor on the thermal stability of the process are considered. The size of the reactor is limited by the possibility of a “thermal explosion” occurring in the frontal layer of the catalyst. Raising the linear gas velocity enhances heat transfer, thereby reducing the overheating of the catalyst bed. The synthesis of solid hydrocarbons can be conducted in reactors no larger than 18 mm in diameter. According to calculations, the maximum temperature drop in a 3-, 4-, and 6-m-long reactor is 4.7, 4.2, and 3.6°C, respectively. The corresponding CO conversion is 35.0, 34.4, and 33.9%, respectively. For producing liquid hydrocarbons in a high-performance reactor, it is necessary to decrease its inner diameter to 12 mm. In this case, the maximum temperature drop at a reactor length of 3, 4, and 6 m is 9.6, 8.7, and 7.6°C, and the CO conversion is 78.0, 77.4, and 76.7%, respectively. The mathematical model devised here provides means to estimate the necessary design parameters of the reactor and the appropriate FT synthesis conditions for producing liquid or solid hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwood, H.E. and Bennett, C.O., Ind. Eng., Chem. Process Des. Dev., 1979, vol. 18, p. 163.

    Article  CAS  Google Scholar 

  2. Bub, G. and Baerns, M., Chem. Eng. Sci., 1980, vol. 35, p. 348.

    Article  CAS  Google Scholar 

  3. Everson, R., Mulder, H., and Keyser, M.J., Appl. Catal., A, 1996, vol. 142, p. 223.

    Article  CAS  Google Scholar 

  4. Jess, A., Popp, R., and Hedden, K., Appl. Catal., A, 1999, vol. 186, p. 321.

    Article  CAS  Google Scholar 

  5. De Swart, J.W.A., Krishna, R., and Sie, S.T., Stud. Surf. Sci. Catal., 1997, vol. 107, p. 213.

    Article  Google Scholar 

  6. Wang, Y.N., Xu, Y.Y., Li, Y.W., Zhao, Y.L., and Zhang, B.J., Chem. Eng. Sci.,2003, vol. 58, p. 867.

    Article  CAS  Google Scholar 

  7. Güttel, R. and Turek, T., Chem. Eng. Sci., 2009, vol. 64, p. 955.

    Article  Google Scholar 

  8. Jess, A. and Kern, C., Chem. Eng. Technol., 2009, vol. 32, p. 1164.

    Article  CAS  Google Scholar 

  9. Philippe, R., Lacroix, M., Dreibine, L., Pham-Huu, C., Edouard, D., Savine, S., Luck, F., and Schweich, D., Catal. Today, 2009, vol. 147,suppl., p. S147.

    Google Scholar 

  10. Wu, J., Zhang, H., Ying, W., and Fang, D., Chem. Eng. Technol., 2010, vol. 33, p. 1083.

    Article  CAS  Google Scholar 

  11. Rafiq, M.H., Jakobsen, H.A., Schmid, R., and Hustad, J.E., Fuel. Process. Technol., 2011, vol. 92, p. 893.

    Article  CAS  Google Scholar 

  12. Kwack, S.-H., Bae, J.W., Park, M.-J., Kim, S.-M., Ha, K.-S., and Jun, K.-W., Fuel, 2011, vol. 90, p. 1383.

    Article  CAS  Google Scholar 

  13. Yates, I.C. and Satterfield, C.N., Energy Fuels, 1991, vol. 5, p. 168.

    Article  CAS  Google Scholar 

  14. Steynberg, A. and Dry, M., Stud. Surf. Sci. Catal., 2004, vol. 152, p. 533.

    Article  Google Scholar 

  15. Sehabiague, L., Lemoine, R., Behkish, A., Heintz, Y.J., Sanoja, M., Oukaci, R., and Morsi, B.I., J. Chin. Inst. Chem. Eng., 2008, vol. 39, p. 169.

    Article  CAS  Google Scholar 

  16. Knochen, J., Guttel, R., Knobloch, G., and Turek. T., Chem. Eng. Process., 2010, vol. 49, p. 958.

    Article  CAS  Google Scholar 

  17. Specchia, V., Baldi, G., and Sicardi, S., Chem. Eng. Commun., 1980, vol. 4, p. 361.

    Article  CAS  Google Scholar 

  18. Fuller, E.N., Schettler, P.D., and Giddings, J.C., Ind. Eng. Chem., 1966, vol. 58, p. 19.

    Google Scholar 

  19. Deckwer, W.D., Bubble Column Reactors, New York: Wiley, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mamonov.

Additional information

Original Russian Text © N.A. Mamonov, L.M. Kustov, S.A. Alkhimov, M.N. Mikhailov, 2013, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamonov, N.A., Kustov, L.M., Alkhimov, S.A. et al. One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation. Catal. Ind. 5, 223–231 (2013). https://doi.org/10.1134/S2070050413030100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050413030100

Keywords

Navigation