Catalysis in Industry

, Volume 5, Issue 3, pp 223–231 | Cite as

One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation

  • N. A. Mamonov
  • L. M. Kustov
  • S. A. Alkhimov
  • M. N. Mikhailov
Catalysis in Petroleum Refining Industry

Abstract

A one-dimensional heterogeneous model has been developed for a cat6alytic fixed-bed Fischer-Tropsch (FT) synthesis reactor in the isothermal granules approximation. The FT process has been simulated for a laboratory-scale reactor. The effects of the linear gas velocity and of the inner diameter of the reactor on the thermal stability of the process are considered. The size of the reactor is limited by the possibility of a “thermal explosion” occurring in the frontal layer of the catalyst. Raising the linear gas velocity enhances heat transfer, thereby reducing the overheating of the catalyst bed. The synthesis of solid hydrocarbons can be conducted in reactors no larger than 18 mm in diameter. According to calculations, the maximum temperature drop in a 3-, 4-, and 6-m-long reactor is 4.7, 4.2, and 3.6°C, respectively. The corresponding CO conversion is 35.0, 34.4, and 33.9%, respectively. For producing liquid hydrocarbons in a high-performance reactor, it is necessary to decrease its inner diameter to 12 mm. In this case, the maximum temperature drop at a reactor length of 3, 4, and 6 m is 9.6, 8.7, and 7.6°C, and the CO conversion is 78.0, 77.4, and 76.7%, respectively. The mathematical model devised here provides means to estimate the necessary design parameters of the reactor and the appropriate FT synthesis conditions for producing liquid or solid hydrocarbons.

Keywords

Fischer-Tropsch synthesis one-dimensional mathematical model fixed-bed catalytic reactor synthetic hydrocarbons temperature profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atwood, H.E. and Bennett, C.O., Ind. Eng., Chem. Process Des. Dev., 1979, vol. 18, p. 163.CrossRefGoogle Scholar
  2. 2.
    Bub, G. and Baerns, M., Chem. Eng. Sci., 1980, vol. 35, p. 348.CrossRefGoogle Scholar
  3. 3.
    Everson, R., Mulder, H., and Keyser, M.J., Appl. Catal., A, 1996, vol. 142, p. 223.CrossRefGoogle Scholar
  4. 4.
    Jess, A., Popp, R., and Hedden, K., Appl. Catal., A, 1999, vol. 186, p. 321.CrossRefGoogle Scholar
  5. 5.
    De Swart, J.W.A., Krishna, R., and Sie, S.T., Stud. Surf. Sci. Catal., 1997, vol. 107, p. 213.CrossRefGoogle Scholar
  6. 6.
    Wang, Y.N., Xu, Y.Y., Li, Y.W., Zhao, Y.L., and Zhang, B.J., Chem. Eng. Sci.,2003, vol. 58, p. 867.CrossRefGoogle Scholar
  7. 7.
    Güttel, R. and Turek, T., Chem. Eng. Sci., 2009, vol. 64, p. 955.CrossRefGoogle Scholar
  8. 8.
    Jess, A. and Kern, C., Chem. Eng. Technol., 2009, vol. 32, p. 1164.CrossRefGoogle Scholar
  9. 9.
    Philippe, R., Lacroix, M., Dreibine, L., Pham-Huu, C., Edouard, D., Savine, S., Luck, F., and Schweich, D., Catal. Today, 2009, vol. 147,suppl., p. S147.Google Scholar
  10. 10.
    Wu, J., Zhang, H., Ying, W., and Fang, D., Chem. Eng. Technol., 2010, vol. 33, p. 1083.CrossRefGoogle Scholar
  11. 11.
    Rafiq, M.H., Jakobsen, H.A., Schmid, R., and Hustad, J.E., Fuel. Process. Technol., 2011, vol. 92, p. 893.CrossRefGoogle Scholar
  12. 12.
    Kwack, S.-H., Bae, J.W., Park, M.-J., Kim, S.-M., Ha, K.-S., and Jun, K.-W., Fuel, 2011, vol. 90, p. 1383.CrossRefGoogle Scholar
  13. 13.
    Yates, I.C. and Satterfield, C.N., Energy Fuels, 1991, vol. 5, p. 168.CrossRefGoogle Scholar
  14. 14.
    Steynberg, A. and Dry, M., Stud. Surf. Sci. Catal., 2004, vol. 152, p. 533.CrossRefGoogle Scholar
  15. 15.
    Sehabiague, L., Lemoine, R., Behkish, A., Heintz, Y.J., Sanoja, M., Oukaci, R., and Morsi, B.I., J. Chin. Inst. Chem. Eng., 2008, vol. 39, p. 169.CrossRefGoogle Scholar
  16. 16.
    Knochen, J., Guttel, R., Knobloch, G., and Turek. T., Chem. Eng. Process., 2010, vol. 49, p. 958.CrossRefGoogle Scholar
  17. 17.
    Specchia, V., Baldi, G., and Sicardi, S., Chem. Eng. Commun., 1980, vol. 4, p. 361.CrossRefGoogle Scholar
  18. 18.
    Fuller, E.N., Schettler, P.D., and Giddings, J.C., Ind. Eng. Chem., 1966, vol. 58, p. 19.Google Scholar
  19. 19.
    Deckwer, W.D., Bubble Column Reactors, New York: Wiley, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. A. Mamonov
    • 1
  • L. M. Kustov
    • 2
  • S. A. Alkhimov
    • 1
  • M. N. Mikhailov
    • 1
    • 2
  1. 1.United Research and Development CentreMoscowRussia
  2. 2.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations