Catalysis in Industry

, Volume 4, Issue 3, pp 179–185 | Cite as

Mechanochemical synthesis of β-NiMoO4 as a precursor of bulk highly dispersed catalyst for the hydrocracking of oil fractions

  • O. A. Knyazheva
  • O. N. Baklanova
  • A. V. Lavrenov
  • E. A. Buluchevskii
  • T. I. Gulyaeva
  • N. N. Leont’eva
  • V. A. Drozdov
  • V. A. Likholobov
  • A. V. Vasilevich
Catalysis in Oil Refining

Abstract

The possibility of synthesizing bulk catalysts by means of mechanochemical activation (MCA), the basis for wasteless technologies for the production of catalysts with particle sizes less than 10 μm, is demonstrated. The precursors of Ni-Mo catalysts for hydrogenation processes are synthesized by MCA. The chemical and phase composition and specific surface area of mechanically activated composites with Ni: Mo atomic ratio = 1.0 and 1.4 are studied by DTA, XRD, TPR, and low-temperature adsorption. It is established that during the simultaneous MCA of Ni- and Mo-containing salts, solid-state reactions yield complex X-ray amorphous compounds that after calcination at 520°C form nickel molybdates composed almost entirely of highly active modified β-NiMoO4, the sulfidation of which produces MoS2 and Ni3S2 phases. Comparative testing of sulfide catalysts (i.e., bulk (Ni: Mo = 1.4) and industrial supported) in model reactions of the conversion of 1-methylnaphthalene and dibenzothiophene was performed at a temperature of 350°C, a pressure of 3.5 MPa, a feedstock hourly space velocity of 2 h−1, and a hydrogen/feedstock ratio of 600. Based on the composition of the 1-methylnaphthalene and dibenzothiophene conversion products while using industrial and bulk catalysts, it is concluded that the bulk catalyst exhibits higher hydrogenating activity.

Keywords

bulk highly dispersed catalyst for hydrocracking mechanochemical activation β-NiMoO4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Sh., Liu, D., Deng, W., and Que, G., Energy Fuels, 2007, vol. 21, p. 3057.CrossRefGoogle Scholar
  2. 2.
    Hou, Zh., Bearden, R., Jr., David, F.T., Miseo, S., Gorbaty, M.L., and Soled S.L., US Patent 6712955, 2004.Google Scholar
  3. 3.
    Zhang, Sh., Deng, W., Luo, H., Liu, D., and Que, G., Energy Fuels, 2008, vol. 22, p. 3583.CrossRefGoogle Scholar
  4. 4.
    Kennepohl, D. and Sanford E., Energy Fuels, 1996, vol. 10, p. 229.CrossRefGoogle Scholar
  5. 5.
    Liu, D., Kong, X., Li, M., and Que, G., Energy Fuels, 2009, vol. 23, p. 958.CrossRefGoogle Scholar
  6. 6.
    Soled, S.L., Riley, K.L., Schleicher, G.P., Demmin, R.A., Schuette, W.L., Schuette, D., and Cody, I.A., US Patent 7513989, 2009.Google Scholar
  7. 7.
    Aliev, R.R., Katalizatory i protsessy pererabotki nefti (Catalysts and Processes for Oil Processing), Moscow, 2010.Google Scholar
  8. 8.
    Matsumura, A., Sato, S., Kondo, T., Saito, I., and de Souza, W.F., Fuel, 2005, vol. 84, p. 417.CrossRefGoogle Scholar
  9. 9.
    Molchanov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, p. 435.CrossRefGoogle Scholar
  10. 10.
    Grigor’eva, T.F., Barinova, A.P., and Lyakhov, N.Z., Mekhanokhimicheskii sintez v metallicheskikh sistemakh (Mechanochemical Synthesis in Metal Systems), Novosibirsk: Parallel’, 2008.Google Scholar
  11. 11.
    Avvakumov, E.G., Khimiya v interesakh ustoichivogo razvitiya, 1994, no. 2, p. 541.Google Scholar
  12. 12.
    Brito, J.L. and Barbosa, A.L., J. Catal., 1997, vol. 171, p. 467.CrossRefGoogle Scholar
  13. 13.
    Plyasova, L.M., Ivanchenko, I.Yu., Andrushkevich, M.M., Buyanov, R.A., Itenberg, I.Sh., Khromova, G.A., et al., Kinet. Katal., 1973, no. 4, p. 1010.Google Scholar
  14. 14.
    Ozkan, U. and Schrader, G.L., J. Catal., 1985, vol. 95, p. 120.CrossRefGoogle Scholar
  15. 15.
    Levin, D., Soled, S.L., and Ying, J.Y., Inorg. Chem., 1996, vol. 35, p. 4191.CrossRefGoogle Scholar
  16. 16.
    Brito, J.L., Barbosa, A.L., Albornoz, A., et al., Catal. Lett., 1994, vol. 26, p. 329.CrossRefGoogle Scholar
  17. 17.
    Laine, J. and Pratt, K.C., React. Kinet. Catal. Lett., 1979, vol. 10, p, 207.CrossRefGoogle Scholar
  18. 18.
    Duplyakin, V.K., Baklanova, O.N., Chirkova, O.A., Antonicheva, N.V., Arbuzov, A.B., Voitenko, N.N., Drozdov, V.A., and Likholobov, V.A., Kinet. Catal., 2010, vol. 51, p. 126.CrossRefGoogle Scholar
  19. 19.
    Madeira, L.M., Portela, M.F., and Mazzocchia, C., Catal. Rev.-Sci. Eng., 2004, vol. 46, p. 53.CrossRefGoogle Scholar
  20. 20.
    Avakumov, E.G., Mekhanokhimicheskie metody aktivatsii khimicheskikh protsessov (Mechanochemical Methods for Activation of Chemical Processes), Novosibirsk: Nauka, 1986.Google Scholar
  21. 21.
    Brito, J.L., Laine, J., and Pratt, K.C., J. Mater. Sci., 1989, vol. 24, p. 425.CrossRefGoogle Scholar
  22. 22.
    Tsurov, M.A., Afanasiev, P.V., and Lunin, V.V., Appl. Catal., A, 1993, vol. 105, p. 205.CrossRefGoogle Scholar
  23. 23.
    Curtis, C.W., Chen, J.H., and Tang, Y., Energy Fuels, 1995, vol. 9, p. 195.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. A. Knyazheva
    • 1
  • O. N. Baklanova
    • 1
    • 2
  • A. V. Lavrenov
    • 1
  • E. A. Buluchevskii
    • 1
    • 2
  • T. I. Gulyaeva
    • 1
  • N. N. Leont’eva
    • 1
  • V. A. Drozdov
    • 1
    • 2
  • V. A. Likholobov
    • 1
    • 2
  • A. V. Vasilevich
    • 1
  1. 1.Institute of Hydrocarbon Processing, Siberian BranchRussian Academy of ScienceOmskRussia
  2. 2.Omsk State Technical UniversityOmskRussia

Personalised recommendations