Skip to main content
Log in

Oxidative reforming of methane on structured Ni-Al2O3/cordierite catalysts

  • General Problems of Catalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arutyunov, V.S. and Krylov, O.V., Usp. Khim., 2005, no. 12, p. 1216.

  2. Chunshan Song and Wei Pan, Catal. Today, 2004, vol. 98, n o. 4, p. 463.

    Article  CAS  Google Scholar 

  3. Krylov, O.V., Ross. Khim. Zh., 2000, vol. 44, no. 1, p. 19.

    CAS  Google Scholar 

  4. Lee, S.-H., Cho, W., Ju, W.-S., et al., Catal. Today, 2003, vol. 87. nos. 1–4, p. 133.

    Article  Google Scholar 

  5. Sodesawa, T., Kinet. Catal., 1999, vol. 40, no. 3, p. 405.

    CAS  Google Scholar 

  6. Giroux, T., Hwang, S., Ye Liu., Ruettinger, W., and Shore, L., Appl. Catal., B, 2005, vol. 56, no. 4, p. 95.

    Google Scholar 

  7. Heck, R.M., Gulatiand, S., and Farrauto, R.J., Chem. Eng. J., 2001, vol. 82, nos. 1–3, p. 149.

    Article  CAS  Google Scholar 

  8. Solov’ev, S.A., Zatelepa, R.N., Gubareni, E.V., et al., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, p. 1883.

    Article  Google Scholar 

  9. Solov’ev, S.A., Kapran, A.Yu., and Orlik, S.N., Teor. Eksp. Khim., 2007, vol. 43, no. 5, p. 299.

    Google Scholar 

  10. Hou, Z., Yokota, O., Tanaka, T., and Yashima, T., Catal. Lett., 2003, vol. 89, nos. 1–2, p. 121.

    Article  CAS  Google Scholar 

  11. Xu, B.-Q., Wei, J.-M., Yu, Y.-T., et al., J. Phys. Chem., B, 2003, vol. 107, p. 5203.

    Article  CAS  Google Scholar 

  12. Bychkov, V.Yu., Krylov, O.V., and Korchak, V.N., Kinet. Catal., 2002, vol. 43, no. 1, p. 86.

    Article  CAS  Google Scholar 

  13. Zheng Xu, Yumin Li, Jiyan Zhang, et al., Appl. Catal., A, 2001, vol. 213, no. 1, p. 65.

    Article  CAS  Google Scholar 

  14. Jun-Mei Wei, Bo-Qing Xu, Jin-Lu Li, et al., Appl. Catal., A, 2000, vol. 196, no. 2, p. L167.

    Article  CAS  Google Scholar 

  15. Bo-Qing Xu, Jun-Mei Wei, Hai-Yan Wang, et al., Catal.Today, 2001, vol. 68, nos. 1–2, p. 217.

    Article  CAS  Google Scholar 

  16. Xinli Zhu, Peipei Huo, Yue-ping Zhang, et al., Appl.Catal., B, 2008, vol. 81, nos. 1–2, p. 132.

    CAS  Google Scholar 

  17. Laosiripojana, N. and Assabumrungrat, S., Appl. Catal., B. 2005, vol. 60, nos. 1–2, p. 107.

    CAS  Google Scholar 

  18. Rostrup-Nielsen, J.R. and Norskov, J.K., Top. Catal., 2006, vol. 40, nos. 1–4, p. 45.

    Article  CAS  Google Scholar 

  19. De Chen, Christensen, K.O., Ochoa-Fernández, E., et al., J. Catal., 2005, vol. 229, no. 1, p. 82.

    Article  CAS  Google Scholar 

  20. Firsova, A.A., Tyulenin, Yu.P., Khomenko, T.I., et al., Kinet. Catal., 2003, vol. 44, no. 6, p. 819.

    Article  CAS  Google Scholar 

  21. Toshihiko, O. and Toshiaki, M., J. Catal., 2001, vol. 204, no. 1, p. 89.

    Article  Google Scholar 

  22. Kim, J.-H., Suh, D.J., Park, T.-J., et al., Int. Natural Gas Conversion Symp., Amsterdam: Elsevier, 1998, p. 771.

    Book  Google Scholar 

  23. Kapran, A.Yu. and Orlik, S.N., Teor. Eksp. Khim., 2005, vol. 41, no. 6, p. 360.

    Google Scholar 

  24. Ketov, A.A., Saulin, D.V., Puzanov, I.S., et al., Russ. J. Appl. Chem., 1997, vol. 70, no. 3, p. 426.

    Google Scholar 

  25. Bychkov, V.Yu., Tyulenin, Yu.P., Krylov, O.V., and Korchak, V.N., Kinet. Catal., 2002, vol. 41, no. 5, p. 724.

    Article  Google Scholar 

  26. Bradford, M.C.J. and Vannice, M.A., Appl. Catal., A, 1996, vol. 142, no. 1, p. 73.

    Article  CAS  Google Scholar 

  27. Osaki, T. and Mori, T., J. Catal., 2001, vol. 204, no. 1, p. 89.

    Article  CAS  Google Scholar 

  28. Slagtern, A., Schuurman, Y., Leclercq, C., et al., J. Catal., 1997, vol. 172, no. 1, p. 118.

    Article  CAS  Google Scholar 

  29. Toshihiko Osaki, Haruhiko Fukaya, Tatsuro Horiuchi, et al., J. Catal., 1998, vol. 180, no. 1, p. 106.

    Article  CAS  Google Scholar 

  30. Tsipouriari, V.A. and Verykios, X.E., J. Catal., 1999, vol. 187, no. 1, p. 85.

    Article  CAS  Google Scholar 

  31. Xiulan, Cai., Xinfa, Dong., and Weiming, Lin., J. Nat. Gas Chem., 2008, vol. 17, no. 1, p. 98.

    Article  Google Scholar 

  32. Solov’ev, S.A., Gubareni E V., and Kurilets Ya.P., Teor. Eksp. Khim., 2008, vol. 44, no. 6, p. 359.

    Google Scholar 

  33. Hou, Z., Yokota, O., and Tanaka, T.A., Catal. Lett., 2003, vol. 87, nos. 1–2, p. 37.

    Article  CAS  Google Scholar 

  34. York, A.P.E., Xiao, T., and Green, L.H., Top. Catal., 2003, vol. 22, nos. 3–4, p. 345.

    Article  CAS  Google Scholar 

  35. Liu, S., Xiong, G., and Sheng, S., Appl. Catal., A, 2000, vol. 198, no. 1, p. 261.

    Article  CAS  Google Scholar 

  36. Shen, S., Li, C., and Yu, C., Stud. Surf. Sci. Catal., 1998, vol. 119, p. 765.

    Article  CAS  Google Scholar 

  37. Tsipouriari, V.A., Zhang, Z., and Verykios, X.E., J. Catal., 1998, vol. 179, no. 1, p. 283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.O. Soloviev, 2011, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soloviev, S.O. Oxidative reforming of methane on structured Ni-Al2O3/cordierite catalysts. Catal. Ind. 4, 1–10 (2012). https://doi.org/10.1134/S2070050412010114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050412010114

Keywords

Navigation