Catalysis in Industry

, Volume 4, Issue 1, pp 1–10 | Cite as

Oxidative reforming of methane on structured Ni-Al2O3/cordierite catalysts

  • S. O. Soloviev
General Problems of Catalysis


The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.


catalyst cordierite reforming oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arutyunov, V.S. and Krylov, O.V., Usp. Khim., 2005, no. 12, p. 1216.Google Scholar
  2. 2.
    Chunshan Song and Wei Pan, Catal. Today, 2004, vol. 98, n o. 4, p. 463.CrossRefGoogle Scholar
  3. 3.
    Krylov, O.V., Ross. Khim. Zh., 2000, vol. 44, no. 1, p. 19.Google Scholar
  4. 4.
    Lee, S.-H., Cho, W., Ju, W.-S., et al., Catal. Today, 2003, vol. 87. nos. 1–4, p. 133.CrossRefGoogle Scholar
  5. 5.
    Sodesawa, T., Kinet. Catal., 1999, vol. 40, no. 3, p. 405.Google Scholar
  6. 6.
    Giroux, T., Hwang, S., Ye Liu., Ruettinger, W., and Shore, L., Appl. Catal., B, 2005, vol. 56, no. 4, p. 95.Google Scholar
  7. 7.
    Heck, R.M., Gulatiand, S., and Farrauto, R.J., Chem. Eng. J., 2001, vol. 82, nos. 1–3, p. 149.CrossRefGoogle Scholar
  8. 8.
    Solov’ev, S.A., Zatelepa, R.N., Gubareni, E.V., et al., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, p. 1883.CrossRefGoogle Scholar
  9. 9.
    Solov’ev, S.A., Kapran, A.Yu., and Orlik, S.N., Teor. Eksp. Khim., 2007, vol. 43, no. 5, p. 299.Google Scholar
  10. 10.
    Hou, Z., Yokota, O., Tanaka, T., and Yashima, T., Catal. Lett., 2003, vol. 89, nos. 1–2, p. 121.CrossRefGoogle Scholar
  11. 11.
    Xu, B.-Q., Wei, J.-M., Yu, Y.-T., et al., J. Phys. Chem., B, 2003, vol. 107, p. 5203.CrossRefGoogle Scholar
  12. 12.
    Bychkov, V.Yu., Krylov, O.V., and Korchak, V.N., Kinet. Catal., 2002, vol. 43, no. 1, p. 86.CrossRefGoogle Scholar
  13. 13.
    Zheng Xu, Yumin Li, Jiyan Zhang, et al., Appl. Catal., A, 2001, vol. 213, no. 1, p. 65.CrossRefGoogle Scholar
  14. 14.
    Jun-Mei Wei, Bo-Qing Xu, Jin-Lu Li, et al., Appl. Catal., A, 2000, vol. 196, no. 2, p. L167.CrossRefGoogle Scholar
  15. 15.
    Bo-Qing Xu, Jun-Mei Wei, Hai-Yan Wang, et al., Catal.Today, 2001, vol. 68, nos. 1–2, p. 217.CrossRefGoogle Scholar
  16. 16.
    Xinli Zhu, Peipei Huo, Yue-ping Zhang, et al., Appl.Catal., B, 2008, vol. 81, nos. 1–2, p. 132.Google Scholar
  17. 17.
    Laosiripojana, N. and Assabumrungrat, S., Appl. Catal., B. 2005, vol. 60, nos. 1–2, p. 107.Google Scholar
  18. 18.
    Rostrup-Nielsen, J.R. and Norskov, J.K., Top. Catal., 2006, vol. 40, nos. 1–4, p. 45.CrossRefGoogle Scholar
  19. 19.
    De Chen, Christensen, K.O., Ochoa-Fernández, E., et al., J. Catal., 2005, vol. 229, no. 1, p. 82.CrossRefGoogle Scholar
  20. 20.
    Firsova, A.A., Tyulenin, Yu.P., Khomenko, T.I., et al., Kinet. Catal., 2003, vol. 44, no. 6, p. 819.CrossRefGoogle Scholar
  21. 21.
    Toshihiko, O. and Toshiaki, M., J. Catal., 2001, vol. 204, no. 1, p. 89.CrossRefGoogle Scholar
  22. 22.
    Kim, J.-H., Suh, D.J., Park, T.-J., et al., Int. Natural Gas Conversion Symp., Amsterdam: Elsevier, 1998, p. 771.CrossRefGoogle Scholar
  23. 23.
    Kapran, A.Yu. and Orlik, S.N., Teor. Eksp. Khim., 2005, vol. 41, no. 6, p. 360.Google Scholar
  24. 24.
    Ketov, A.A., Saulin, D.V., Puzanov, I.S., et al., Russ. J. Appl. Chem., 1997, vol. 70, no. 3, p. 426.Google Scholar
  25. 25.
    Bychkov, V.Yu., Tyulenin, Yu.P., Krylov, O.V., and Korchak, V.N., Kinet. Catal., 2002, vol. 41, no. 5, p. 724.CrossRefGoogle Scholar
  26. 26.
    Bradford, M.C.J. and Vannice, M.A., Appl. Catal., A, 1996, vol. 142, no. 1, p. 73.CrossRefGoogle Scholar
  27. 27.
    Osaki, T. and Mori, T., J. Catal., 2001, vol. 204, no. 1, p. 89.CrossRefGoogle Scholar
  28. 28.
    Slagtern, A., Schuurman, Y., Leclercq, C., et al., J. Catal., 1997, vol. 172, no. 1, p. 118.CrossRefGoogle Scholar
  29. 29.
    Toshihiko Osaki, Haruhiko Fukaya, Tatsuro Horiuchi, et al., J. Catal., 1998, vol. 180, no. 1, p. 106.CrossRefGoogle Scholar
  30. 30.
    Tsipouriari, V.A. and Verykios, X.E., J. Catal., 1999, vol. 187, no. 1, p. 85.CrossRefGoogle Scholar
  31. 31.
    Xiulan, Cai., Xinfa, Dong., and Weiming, Lin., J. Nat. Gas Chem., 2008, vol. 17, no. 1, p. 98.CrossRefGoogle Scholar
  32. 32.
    Solov’ev, S.A., Gubareni E V., and Kurilets Ya.P., Teor. Eksp. Khim., 2008, vol. 44, no. 6, p. 359.Google Scholar
  33. 33.
    Hou, Z., Yokota, O., and Tanaka, T.A., Catal. Lett., 2003, vol. 87, nos. 1–2, p. 37.CrossRefGoogle Scholar
  34. 34.
    York, A.P.E., Xiao, T., and Green, L.H., Top. Catal., 2003, vol. 22, nos. 3–4, p. 345.CrossRefGoogle Scholar
  35. 35.
    Liu, S., Xiong, G., and Sheng, S., Appl. Catal., A, 2000, vol. 198, no. 1, p. 261.CrossRefGoogle Scholar
  36. 36.
    Shen, S., Li, C., and Yu, C., Stud. Surf. Sci. Catal., 1998, vol. 119, p. 765.CrossRefGoogle Scholar
  37. 37.
    Tsipouriari, V.A., Zhang, Z., and Verykios, X.E., J. Catal., 1998, vol. 179, no. 1, p. 283.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. O. Soloviev
    • 1
  1. 1.Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations