Catalysis in Industry

, 3:260 | Cite as

Nanosized Pt-, Ru-, and Pd-containing catalysts for organic synthesis and solution of environmental issues

  • V. G. Matveeva
  • P. M. Valetsky
  • M. G. Sulman
  • L. M. Bronstein
  • A. I. Sidorov
  • V. Yu. Doluda
  • A. V. Gavrilenko
  • L. Zh. Nikoshvili
  • A. V. Bykov
  • M. V. Grigorjev
  • E. M. Sulman
General Review

Abstract

Synthesis of Pt-, Ru-, and Pd-containing nanoparticles in the pores of polymeric matrix of hypercrosslinked polystyrene, their structure and catalytic properties are under consideration. Physicochemical studies have shown that metal nanoparticle formation depends on the properties of the polymeric matrix porous structure, the nature of metal precursors and the synthesis conditions. The study of catalytic properties of metal nanoparticles stabilized in mesoporous matrices showed promising applications of these systems in the reactions of selective oxidation and hydrogenation, which are intermediate stages in the synthesis of precursors of vitamins and medicines. In order to solve environmental problems, nanocatalysts were investigated in the processes of oxidative degradation of phenol and reductive denitrification of nitrates for purification of sewage and natural water.

Keywords

nanocatalysts organic synthesis ecology hypercrosslinked polystyrene Pt Ru Pd oxidative degradation of phenols catalytic oxidation of glucose catalytic oxidation of phenol 

References

  1. 1.
    Fendler, J.H., Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications, New York: Wiley-VCH, 1998.Google Scholar
  2. 2.
    Wieckowski, A., Savinova, E.R., and Vayenas, C.G., Catalysis and Electrocatalysis at Nanoparticle Surfaces, New York, 2003.Google Scholar
  3. 3.
    Schmid, G., Nanoparticles: From Theory to Application, Weinheim: Wiley-VCH, 2004.Google Scholar
  4. 4.
    Somorjai, G.A., Contreras, A.M., Montano, M., and Rioux, R.M., Proc. Nat. Acad. Sci. U. S. A., 2006, vol. 103, p. 10577.CrossRefGoogle Scholar
  5. 5.
    Astruc, D., Lu, F., and Aranzaes, J.R., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, p. 7852.CrossRefGoogle Scholar
  6. 6.
    Mueller, C., Nijkamp, M.G., and Vogt, D., Eur. J. Inorg. Chem., 2005, vol. 20, p. 4011.CrossRefGoogle Scholar
  7. 7.
    Bronstein, L.M., Encyclopedia of Nanoscience and Nanotechnology, in: Nalwa, H.S., Ed., Stevenson Ranch: APS, 2004, p. 193.Google Scholar
  8. 8.
    Satterfield, C.N., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1984.Google Scholar
  9. 9.
    Gubin, S.P., Yurkov, G.Yu., and Kataeva, N.A., Nanochastitsy blagorodnykh metallov i materialy na ikh osnove (Nanoparticles of Noble Metals and Materials Therefrom), Moscow: Mir, 2006.Google Scholar
  10. 10.
    Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: KDU, 2007.Google Scholar
  11. 11.
    Bronshtein, L.M., Sidorov, S.N., and Valetskii, P.M., Usp. Khim., 2004, vol. 73, p. 542.Google Scholar
  12. 12.
    Bronstein, L.M., Matveeva, V.G., and Sulman, E.M., Nanoparticulate Catalysts Based on Nanostructured Polymers in Nanoparticles and Catalysis, Astruc, D., Ed., Weinheim: Wiley-VCH, 2007.Google Scholar
  13. 13.
    Groeschel, L., Haidar, R., Beyer, A., Reichert, K.-H., and Schomaecker R., Catal. Lett., 2004, vol. 95.Google Scholar
  14. 14.
    Groeschel, L., Haidar, R., Beyer, A., Coelfen, H., Frank, B., and Schomaecker, R., Ind. Eng. Chem. Res., 2005, vol. 44, p. 9064.CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Wang, X., Wu, H., and Li, C., J. Colloid Interface Sci., 2005, vol. 87, p. 604.CrossRefGoogle Scholar
  16. 16.
    Tsyurupa, M.P. and Davankov, V.A., J. Polym. Sci.: Polym. Chem. Ed., 1980, vol. 1, p. 1399.CrossRefGoogle Scholar
  17. 17.
    Davankov, V.A. and Tsyurupa, M.P., React. Polym., 1990, vol. 13, p. 27.CrossRefGoogle Scholar
  18. 18.
    Pastukhov, A.V., Fiziko-khimicheskie svoistva i strukturnaya podvizhnost’ sverkhsshitykh polistirolov (Physicochemical Properties and Structural Mobility of Hypercrosslinked Polystyrenes), Extended Abstract of Doctoral (Chem.) Dissertation, Moscow: Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 2009.Google Scholar
  19. 19.
    Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.Google Scholar
  20. 20.
    Bonrath, W., Eggersdorfer, M., and Netscher, T., Catal. Today, 2007, vol. 121, p. 45.CrossRefGoogle Scholar
  21. 21.
    Klabunovskii, E.I., Usp. Khim., 1996, vol. 65, p. 350.Google Scholar
  22. 22.
    Kagan, H.B. and Dang, T.-P., J. Am. Chem. Soc., 1972, vol. 94, no. 18, p. 6429.CrossRefGoogle Scholar
  23. 23.
    Noyori, R., Stereocontrolled Organic Synthesis. Ed., Oxford: Blackwell Scientific Publications, 1994.Google Scholar
  24. 24.
    Karski, S. and Paryjczak, T., Witonska, I., Kinet. Catal., 2003, vol. 44, p. 618.CrossRefGoogle Scholar
  25. 25.
    Broennimann, C., Bodnar, Z., Aeschimann, R., Mallat, T., and Baiker, A., J. Catal., 1996, vol. 16, p. 720.CrossRefGoogle Scholar
  26. 26.
    Besson, M. and Gallezot, P., Catal. Today, 2003, vol. 81, p. 547.CrossRefGoogle Scholar
  27. 27.
    Sidorov, S., Volkov, I., Davankov, V., et al., J. Am. Chem. Soc., p. 2001.Google Scholar
  28. 28.
    Bronstein, L., Goerigk, G., Kostylev, M., et al., J. Phys. Chem., vol. 108, p. 18234.Google Scholar
  29. 29.
    Doluda, V.Y., Sulman, E.M., Sulman, M.G., et al., Chem. Eng. J., 2007, vol. 134, p. 256.CrossRefGoogle Scholar
  30. 30.
    Sulman, E.M., Matveeva, V.G., Doluda, V.Y., Sidorov, A.I., Lakina, N.V., Bykov, A.V., Sulman, M.G., Valetsky, P.M., Kustov, L.M., et al., J. Appl. Catal., B, 2010, vol. 94, p. 200.CrossRefGoogle Scholar
  31. 31.
    Beamish, F.E., The Analytical Chemistry of the Noble Metals, Oxford, 1966.Google Scholar
  32. 32.
    Ginzburg, S.I., Ezerskaya, N.A., Prokof’eva, I.V., Fedorenko, N.V., Shlenskaya, V.I., and Bel’skii, N.K., Analiticheskaya khimiya platinovykh metallov (Analytical Chemistry of Platinum Metals), Moscow: Nauka, 1972.Google Scholar
  33. 33.
    Sulman, E., Doluda, V., Dzwigaj, S., et al., J. Mol. Catal. A: Chem., 2007, vol. 278, p. 112.CrossRefGoogle Scholar
  34. 34.
    Mallat, T. and Baiker, A., Chem. Rev., 2004, vol. 104, p. 3037.CrossRefGoogle Scholar
  35. 35.
    Shnaidman, L.O., Proizvodstvo vitaminov (Manufacture of Vitamins), Moscow: Pishchevaya promyshlennost’, 1973.Google Scholar
  36. 36.
    Berezovskii, V.M., Khimiya vitaminov, (Chemistry of Vitamins), Moscow: Pishchevaya promyshlennost’, 1973.Google Scholar
  37. 37.
    Matveeva, V.G., Sul’man, E.M., and Sul’man, M.G., Katal. Prom-sti, 2002, no. 5, p. 50.Google Scholar
  38. 38.
    Comotti, M., Della, PinaC., Falletta, E., and Rossi, M., J. Catal., 2006, vol. 244, p. 122.CrossRefGoogle Scholar
  39. 39.
    Kochetkov, N.K., Bochkov, A.F., Dmitriev, B.A., et al., Khimiya uglevodov (Chemistry of Carbohydrates), Moscow: Khimiya, 1967.Google Scholar
  40. 40.
    Golodets, I., Geterogenno-kataliticheskoe okislenie organicheskikh veshchestv (Oxidation of Organic Substances Using Heterogeneous Catalysts), Kiev: Naukova dumka, 1978.Google Scholar
  41. 41.
    Sergeev, G.B., Ross. Khim. Zh., 2002, vol. 46, no. 5.Google Scholar
  42. 42.
    Bukhtiyarov, V.I. and Slin’ko, M.G., Usp. Khim., 2001, vol. 70, no. 2, p. 167.Google Scholar
  43. 43.
    Mercier, C. and Chabardes, P., Pure Appl. Chem., 1994, vol. 66, p. 1509.CrossRefGoogle Scholar
  44. 44.
    Pak, A.M. and Sokol’skii, D.V., Selektivnoe gidrirovanie nepredel’nykh oksosoedinenii (Selective Hydrogenation of Unsaturated Oxo Compounds), Alma-Ata: Nauka, 1983.Google Scholar
  45. 45.
    Sulman, E.M., Russ. Chem. Rev, 1994, no. 63, p. 923.Google Scholar
  46. 46.
    Novikov, Yu.V., Ekologiya, okruzhayushchaya sreda i chelovek (Ecology, Environment, and Human Being), Moscow: Fair, 1999.Google Scholar
  47. 47.
    Chen, C.Y. and Lu, C.L., Sci. Total Environ., 2002, vol. 289, nos. 1–3, p. 123.Google Scholar
  48. 48.
    SanPiN 2.1.4.1074-01. Pit’evaya voda. Gigienicheskie trebovaniya k kachestvu vody tsentralizovannykh sistem pit’evogo vodosnabzheniya. Kontrol’ kachestva (Health Code 2.1.4.1074-01. Drinking Water. Hygienic Requirements to Water Quality of Drinking-Water Supply Systems. Quality Control), Moscow: Ministerstvo zdravookhraneniya RF, 2001.Google Scholar
  49. 49.
    Demedyuk, V.I., Tkachenko, S.N., Makhov, E.A., et al., Katal. Prom-sti, 2003, no. 6, p. 42.Google Scholar
  50. 50.
    Wu Qiang, Hu Xijun, Yue Po-lock, Chem. Eng. Sci., 2003, no. 58, p. 923.Google Scholar
  51. 51.
    Rogers, K.R., Eletrochim. Acta., 2000, no. 45, p. 4373.Google Scholar
  52. 52.
    Keisuke, Ikehata and James, A., Biotechnol. Prog., 2000, no. 16, p. 533.Google Scholar
  53. 53.
    Davydenko, T.I., Prikl. Biokhim. Mikrobiol., 2004, no. 6, p. 625.Google Scholar
  54. 54.
    Shin-Cheng Tzeng, Yeuk-Chueng Liu, J. Mol. Catal. B: Enzym., 2004, no. 32, p. 7.Google Scholar
  55. 55.
    Qiang Wu, Xijun Hu, Po-lock Yue, Chem. Eng. Sci., 2003, no. 58, p. 923.Google Scholar
  56. 56.
    Quintanilla, A., Casas, J., Zazo, J., Mohedano, A., and Rodrigues, F., J. App. Catal. B, 2006, no. 62, p. no. 115.Google Scholar
  57. 57.
    Taran, O.P., Polyanskaya, E.M., Ogorodnikova, O.L., et al., Katal. Prom-sti, 2010, no. 6, p. 48.Google Scholar
  58. 58.
    Herrerias, C.I., Zhang, T.Y., and Li, C.J., Tetrahedron Lett., 2006, no. 47, p. no. 13.Google Scholar
  59. 59.
    Massa, P., Ivorra, F., and Haure, P., J. Catal. Lett., 2005, no. 101, p. 201.Google Scholar
  60. 60.
    Srinivas, D. and Sivasanker, S., Catal. Surv. Asia, 2003, no. 7, p. no. 121.Google Scholar
  61. 61.
    Santos, A., Yustos, P., and Quintanilla, A., Top. Catal., 2005, no. 33, p. 191.Google Scholar
  62. 62.
    Murray, R.K., Granner, D.K., and Mayes, P.A, Harper’s Illustrated Biochemistry, New York: McGraw-Hill Medical, 2004.Google Scholar
  63. 63.
    Zakhvataeva, N.V., Shelomkov, A.S., and Vasil’ev, T.V., Proekty razvitiya infrastruktury goroda. Vyp. 3. Vodnye sistemy i blagoustroistvo gorodskoi sredy, in Sb. nauch. tr. (Projects for City Infrastructure Development. Issue 3. Water Supply Systems and Improvement of Urban Environment. (Collection of scientific papers)), Moscow: Izd-vo Prima-Press-M, 2003.Google Scholar
  64. 64.
    Moorcroft, M.J., Dawis, J., and Compton, R.G., Talanta, 2001, vol. 54, p. 785.CrossRefGoogle Scholar
  65. 65.
    Prüsse, U. and Vorlop, K.-D., Chem Kon., 1996. Ed. 3, no. 2, p. 62.Google Scholar
  66. 66.
    Gauthard, F., Epron, F., and Barbier, J., J. Catal., 2003, vol. 220, p. 182.CrossRefGoogle Scholar
  67. 67.
    Prüsse, U. and Vorlop, K.-D., J. Mol. Catal. A: Chem., 2001, vol. 173, p. 313.CrossRefGoogle Scholar
  68. 68.
    Tsvetkova, I.B., Bronstein, L.M., Sidorov, S.N., et al., J. Mol. Catal. A: Chem., 2007, vol. 276, nos. 1–2, p. 116.CrossRefGoogle Scholar
  69. 69.
    Gavrilenko, A.V. and Sul’man, E.M., Izv. Vyssch. Uchebn. Zaved., Khim. Khim. Tekhnol., 2005, vol. 48, no. 6, p. 105.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. G. Matveeva
    • 1
  • P. M. Valetsky
    • 2
  • M. G. Sulman
    • 1
  • L. M. Bronstein
    • 2
  • A. I. Sidorov
    • 1
  • V. Yu. Doluda
    • 1
  • A. V. Gavrilenko
    • 1
  • L. Zh. Nikoshvili
    • 1
  • A. V. Bykov
    • 1
  • M. V. Grigorjev
    • 1
  • E. M. Sulman
    • 1
  1. 1.Tver State Technical UniversityTverRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations