Catalysis in Industry

, Volume 3, Issue 2, pp 103–108 | Cite as

Titanium-magnesium catalysts for propylene polymerization: The effect of donors

  • G. D. Bukatov
  • S. A. Sergeev
  • V. A. Zakharov
  • L. G. Echevskaya
  • M. A. Matsko
Catalysis in Chemical and Petrochemical Industry


The chain transfer reaction with hydrogen at propylene polymerization over Ti-Mg catalysts (TMCs) of composition TiCl4/D1/MgCl2-AlEt3/D2 is studied in a wide hydrogen concentration range. A two-step mechanism of this reaction is suggested. This mechanism accounts for the fractional order of the reaction with respect to hydrogen concentration. Constants of chain transfer reaction with hydrogen are determined for TMC with different donors: 1,3-diether or dibutyl phthalate as D1 and tetraethoxysilane or dicyclopentyldimethoxysilane as D2. In propylene polymerization over the TMCs, the length of the polymer chain is mainly determined by the ratio of the propylene and hydrogen concentrations because the propagation and chain transfer rate constants are comparable. The rate constant of chain transfer with hydrogen at ethylene polymerization is significantly (more than one order of magnitude) less, and higher hydrogen concentrations are required for attaining the same degree of polymerization. The results of this study might be helpful in simulation of industrial polymerization processes and in control of the polymer molar mass.


supported Ziegler-Natta catalysts Ti-Mg catalysts with electron donors propylene polymerization chain transfer with hydrogen molar mass of polypropylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbe, P.C., Cecchin, G., and Noristi, L., Adv. Polym. Sci., 1987, vol. 81, p. 1.CrossRefGoogle Scholar
  2. 2.
    Albizzati, E., Giannini, U., Morini, G., Galimberti, M., Barino, L., and Scordamaglia, R., Macromol. Symp., 1995, vol. 89, p. 73.CrossRefGoogle Scholar
  3. 3.
    Noristi, L., Barbe, P.C., and Baruzzi, G., Macromol. Chem., 1991, vol. 192, p. 1115.CrossRefGoogle Scholar
  4. 4.
    Chadwick, J.C., Macromol. Symp., 2001, vol. 173, p. 21.CrossRefGoogle Scholar
  5. 5.
    Guastalla, G. and Giannini, U., Macromol. Chem., Rapid Commun., 1983, vol. 4, p. 519.CrossRefGoogle Scholar
  6. 6.
    Mori, H., Tashiro, K., and Terano, M., Macromol. Rapid Commun., 1995, vol. 16, p. 651.CrossRefGoogle Scholar
  7. 7.
    Mori, H., Iizuka, T., Tashiro, K., and Terano, M., Macromol. Chem. Phys., 1997, vol. 198, p. 1499.CrossRefGoogle Scholar
  8. 8.
    Chadwick, J.C., van Kessel, G.M.M., and Sudmeijer, O., Macromol. Chem. Phys., 1995, vol. 196, p. 1431.CrossRefGoogle Scholar
  9. 9.
    Bukatov, G.D., Goncharov, V.S., and Zakharov, V.A., Macromol. Chem. Phys., 1995, vol. 196, p. 1751.CrossRefGoogle Scholar
  10. 10.
    Chadwick, J.C., van der Burgt, F.P.T.J., Rastogi, S., Busico, V., Cipullo, R., Talarico, G., and Heere, J.J.R., Macromolecules, 2004, vol. 37, p. 9722.CrossRefGoogle Scholar
  11. 11.
    Bukatov, G.D., Sergeev, S.A., Zakharov, V.A., and Potapov, A.G., Kinet. Katal., 2008, vol. 49, no. 6, p. 782 [Kinet. Catal. (Engl. Transl.), vol. 49, no. 6, p. 824].CrossRefGoogle Scholar
  12. 12.
    Bukatov, G.D., Sergeev, S.A., Zakharov, V.A., Maiyer, E.A., Shabalin, E.Yu., and Ionov, A.R., Khim. Prom.-st., 2009, no. 6, p. 293.Google Scholar
  13. 13.
    Zakharov, V.A., Bukatov, G.D., and Sergeev, S.A., RF Patent 2152404, 2000; Sergeev, S.A., Bukatov, G.D., and Zakharov, V.A., RF Patent 2191196, 2002.Google Scholar
  14. 14.
    Bukatov, G.D., Zakharov, V.A., and Barabanov, A.A., Kinet. Katal., 2005, vol. 46, no. 2, p. 166 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 2, p. 180].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. D. Bukatov
    • 1
  • S. A. Sergeev
    • 1
  • V. A. Zakharov
    • 1
  • L. G. Echevskaya
    • 1
  • M. A. Matsko
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations