Catalysis in Industry

, Volume 3, Issue 1, pp 70–75 | Cite as

Gas-phase conversion of glycerol over mixed metal oxide catalysts

  • W. Suprun
  • H. Papp
Catalysis in Chemical in Petrochemical Industry


A series of aluminophosphates (APO) catalysts with Ce, Cu, Cr, Fe, Mn, Mo, V, and W oxide loading at a constant ratio M: Al = 1: 10 and PO4: Al = 1: 12 were prepared and characterized by N2 physisorption, XRD and NH3-TPD. Gas-phase dehydration of glycerol to produce acrolein and acetol was investigated at 280°C in presence of water. Conversion and product distribution depended on the intrinsic acidity and the type of transition metal oxide. Best selectivity to acrolein (52–58%) was obtained for W- und Mo-APO catalysts. Cr-, Mn- and W- oxide containing catalysts enhanced the formation of phenol, acetaldehyde and CO x . The catalysts containing V- and Fe-oxide promoted the formation of allyl alcohol. All catalysts showed long term stability, which can be attributed to the redox ability of the metal oxides that enhances the removal of coke deposits. The investigated catalyst a specially W-APO and Mo-APO can be recommended for further controlled trials on a pilot plant for selective conversion of water solution of glycerol to acrolein and/or acetol.


transition metal oxide Al2O3-PO4 glycerol dehydration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zheng, Y., Chen, X., and Shen, Y., Chem. Rev., 2008, vol. 108, p. 5253.CrossRefGoogle Scholar
  2. 2.
    Tsukuda, E., Sato, S., et al., Catal. Commun., 2007, vol. 8, p. 1349.CrossRefGoogle Scholar
  3. 3.
    Chai, S.H., Wang, H.P., et al., Green Chem., 2007, vol. 9, p. 1130.CrossRefGoogle Scholar
  4. 4.
    Atia, H., Armbruster, U., and Martin, A., J. Catal., 2008, vol. 258, p. 71.CrossRefGoogle Scholar
  5. 5.
    Jia, C.J., Liu, Y., Schmidt, W., and Schueth, F., J. Catal., 2010, vol. 269, p. 71.CrossRefGoogle Scholar
  6. 6.
    Ulgen, A. and Hoelderich, W., Catal. Lett., 2009, vol. 31, p. 122.CrossRefGoogle Scholar
  7. 7.
    Suprun, W., Lutecki, M., Haber, T., and Papp, H., J. Molec. Catal. A, 2009, vol. 309, p. 71.CrossRefGoogle Scholar
  8. 8.
    Bautista, F.M., Campelo, J.M., et al., Appl. Catal. A, 2003, vol. 24, p. 93.Google Scholar
  9. 9.
    Tanabe, K., Misono, M., Ono, Y., and Hattor, H., Stud. Surf. Sci. Catal., 1989, vol. 51, p. 5.CrossRefGoogle Scholar
  10. 10.
    Wang, F., Dubois, J.L., and Ueda, W., J. Catal., 2009, vol. 268, p. 260.CrossRefGoogle Scholar
  11. 11.
    Sato, S., Takahashi, R., Kobune, M., and Gotoh, H., Appl. Catal. A, 2009, vol. 356, p. 57.CrossRefGoogle Scholar
  12. 12.
    Miller, I.J. and Saunders, E.R., Fuel, 1987, vol. 66, p. 130.CrossRefGoogle Scholar
  13. 13.
    Diez, V.K., Apestequila, C.R., and Di Cosiomo, J.I., J. Catal., 2003, vol. 215, p. 220.CrossRefGoogle Scholar
  14. 14.
    Chai, S.H., Wang, H.P., Liang, Y., and Xu, B.-Q., J. Catal., 2007, vol. 250, p. 342.CrossRefGoogle Scholar
  15. 15.
    Suprun, W., Gläser, R., and Papp, H., DGMK-Conference, “Conversion of Biomass” (Gelsenkirchen, Germany, 2010), p. 307.Google Scholar
  16. 16.
    Jani, M.J., Macht, J., Iglesia, E., and Neurock, M., J. Phys. Chem. C, 2009, vol. 113, p. 1872.CrossRefGoogle Scholar
  17. 17.
    Kinage, A.K, Upare, P.P., et al., Catal. Comun., 2010, vol. 11, p. 620.CrossRefGoogle Scholar
  18. 18.
    Liu, S.Y., Zhou, et al., ChemSusChem., 2008, vol. 1, p. 578.CrossRefGoogle Scholar
  19. 19.
    Sato, S., Akiyama, M., et al., Appl. Cat. A, 2008, vol. 347, p. 186.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institut für Technische ChemieUniversität LeipzigLeipzigGermany

Personalised recommendations