Catalysis in Industry

, Volume 2, Issue 1, pp 1–10 | Cite as

Adsorption, catalysis, and reactions on the surfaces of metal nano-oxides

Catalysis and Nanotechnologies


Nanomaterials based on metal oxides are considered. Special attention is given to adsorption, because this step determines physicochemical properties of nanostructured materials. The main processes are considered that occur on the surface of metal nano-oxides in the course of adsorption and the nature of chemoresistance. A model is presented that explains the increasing sensitivity of semiconductor sensor materials with a decrease in the grain size. The potential of the use of metal and metal oxide nanoparticles in catalysis and photocatalysis is discussed. Examples are given for the selective synthesis of α-mercaptopyridine on the surface of TiO2 with supported silver nanoparticles with a diameter of <1 nm. Possible problems that might appear when nanoparticles are used in large-scale manufactures are discussed. Promising examples of the use of magnesium and calcium oxide nanoparticles for the destruction of toxic substances, specifically 3,3-dimethyl-2-butylmethylphosphoxofluoride and dichloroethyl sulfide at room temperature are analyzed. The method of cryoformation is considered that makes it possible to create new nanomaterials for use in catalysis, in gas sensors, and for modifying pharmaceuticals to reach a higher biological activity.


Fluticasone Propionate Metal Oxide Nanoparticles Mercaptopyridine Nanocrystalline Zinc Oxide Zinc Oxide Nanopowder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poole, C.P., Jr. and Owens, F.J., Introduction to Nanotechnology, New York: Wiley, 2003.Google Scholar
  2. 2.
    Ozin, G. and Arsenault, A., Nanochemistry: A Chemical Approach to Nanomaterials, Amsterdam: Elsevier, 2005.Google Scholar
  3. 3.
    Sergeev, G.V., Nanoshemistry, Amsterdam: Elsevier, 2006.Google Scholar
  4. 4.
    Petrunin, V., Trudy VII Vserossiiskoi konferentsii “Fizikokhimiya ul’tradispersnykh (nano)-sistem” (Proc. VII All-Russia Conf. on Physical Chemistry of Ultradispersed (Nano)Systems), Moscow: MIFI, 2006, pp. 10–14.Google Scholar
  5. 5.
    Bochenkov, V. and Sergeev, G., Usp. Khim., 2007, vol. 76, p. 1084.Google Scholar
  6. 6.
    Vol’kenshtein, F., Elektronnye protsessy na poverkhnosti poluprovodnika pri khemosorbtsii (Electron Processes on the Semiconductor Surfaces during Chemisoprption), Moscow: Nauka, 1987.Google Scholar
  7. 7.
    Morrison, S.J., J. Phys. Chem., 1953, vol. 57, p. 860.CrossRefGoogle Scholar
  8. 8.
    Peka, G.P., Fizika poverkhnosti poluprovodnikov (The Physics of Semiconductor Surface), Kiev: Izd-vo Kievskogo Univ., 1967.Google Scholar
  9. 9.
    Semiconductor Sensors in Physico-Chemical Studies, Kupriyanov, L.Y.., Ed., Amsterdam: Elsevier, 1996.Google Scholar
  10. 10.
    Garner, W.E., Chemistry of the Solid State London: Butterworths Scientific Publications, 1956.Google Scholar
  11. 11.
    Kocemba, I., Electron Technology, 1996, vol. 29, p. 372.Google Scholar
  12. 12.
    Barsan, N. and Weimar, U., J. Electroceramics, 2001, vol. 7, p. 143.CrossRefGoogle Scholar
  13. 13.
    Watson, J., Sens. Actuator, 1992, vol. 8, p. 173.CrossRefGoogle Scholar
  14. 14.
    Iwamoto, M., Characterisation of Oxygen Adsorbates on Semiconductive Oxides, Tokyo: Kodansha, 1992, vol. 4.Google Scholar
  15. 15.
    Chemical Sensing with Solid State Devices, Madou, M.J., and Morrison, S.R., Eds., London: Academic, 1991.Google Scholar
  16. 16.
    Fryberger, T.B. and Semancik, S., Sens. Actuator, 1990, vol. 2, p. 305.CrossRefGoogle Scholar
  17. 17.
    Zemel, J.N., Thin Solid Films, 1988, vol. 163, p. 139.CrossRefGoogle Scholar
  18. 18.
    Gaggiotti, G., Galdikas, A., Kaciulis, S., et al., Sens. Actuator, 1995, vol. 25, p. 516.CrossRefGoogle Scholar
  19. 19.
    Windischmann, H. and Mark, P., J. Electrochem. Soc., 1979, vol. 126, p. 627.CrossRefGoogle Scholar
  20. 20.
    Peti, F., Fleisher, M., Meixner, H., and Giber, J., Sens. Actuator, 1994, vol. 19, p. 573.CrossRefGoogle Scholar
  21. 21.
    Barsan, N., Schweizer-Berberich, M., and Göpel, W., Fresenius J. Anal. Chem., 1999, vol. 365, p. 287.CrossRefGoogle Scholar
  22. 22.
    Williams, D.E., Sens. Actuator, 1999, vol. 57, p. 1.CrossRefGoogle Scholar
  23. 23.
    Simon, I., Barsan, N., Bauer, M., and Weimar, U., Sens. Actuator, 2001, vol. 73, p. 1.CrossRefGoogle Scholar
  24. 24.
    Yamazoe, N. and Miura, N., Some Basic Aspects of Semiconductor Gas Sensors, Tokyo: Kodansha, 1992, vol. 4, p. 19.Google Scholar
  25. 25.
    Yamazoe, N., Sens. Actuator, 1991, vol. 5, p. 7.CrossRefGoogle Scholar
  26. 26.
    Kisin, V.V., Sysoev, V.V., Voroshilov, S.A., and Simakov, V.V., Fiz. Tekh. Poluprovodn., 2000, vol. 34, p. 314.Google Scholar
  27. 27.
    Sberveglieri, G., Sens. Actuator, 1995, vol. 23, p. 103.CrossRefGoogle Scholar
  28. 28.
    Bochenkov, V.E. and Sergeev, G.B., Adv. Coll. Int. Sci, 2005, vol. 116, p. 245.CrossRefGoogle Scholar
  29. 29.
    Hahn, S.H., Barsan, N., Weimar, U., et al., Thin Solid Films, 2003, vol. 436, p. 17.CrossRefGoogle Scholar
  30. 30.
    Schmid, W., Barsan, N., and Weimar, U., Sens. Actuator, 2003, vol. 89, p. 232.CrossRefGoogle Scholar
  31. 31.
    Harbeck, S., Szatvanyi, A., Barsan, N., et al., Thin Solid Films, 2003, vol. 436, p. 76.CrossRefGoogle Scholar
  32. 32.
    Ahlers, S., Müller, G., and Doll, T., Sens. Actuator, 2005, vol. 107, p. 587.CrossRefGoogle Scholar
  33. 33.
    RF Patent 2097751.Google Scholar
  34. 34.
    Bochenkov, V.E., Chromium Coating and Electrophysical Poperties of Discontinuous Films of Lead, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Mosow State University, 2004.Google Scholar
  35. 35.
    Bochenkov, V.E., Zagorskii, V.V., and Sergeev, G.B., Sens. Actuators, 2004, vol. 103, p. 375.CrossRefGoogle Scholar
  36. 36.
    Bochenkov, V.E., Karageorgiev, P., Brehmer, L., and Sergeev, G.B., Thin Solid Films, 2004, vol. 458, p. 303.CrossRefGoogle Scholar
  37. 37.
    Shmanova, E., Bochenkov, V., Zagorsky, V., and Sergeev, G., Mendeleev Commun., 2008, vol. 18, p. 8.CrossRefGoogle Scholar
  38. 38.
    Tada, H., Teranishi, K., Inubushi, Y., and Ito, S., Langmuir, 2000, vol. 16, p. 3304.CrossRefGoogle Scholar
  39. 39.
    Wilcoxon, J.P., J. Phys. Chem. B, 2000, vol. 104, p. 7334.CrossRefGoogle Scholar
  40. 40.
    Carnes, C. and Klabunde, K., Langmuir, 2000, vol. 16, p. 3764.CrossRefGoogle Scholar
  41. 41.
    Wagner, G., Bartram, P., Koper, O., and Klabunde, K., J. Phys. Chem. B, 1999, vol. 103, p. 3225.CrossRefGoogle Scholar
  42. 42.
    Wagner, G., Koper, O., Lucas, E., et al., J. Phys. Chem., 2000, vol. 104, p. 5118.Google Scholar
  43. 43.
    Poisot, P., Laurelle, S., Gruqeon, S., et al., Nature, 2000, vol. 407, p. 496.CrossRefGoogle Scholar
  44. 44.
    Shevchenko, V.Ya., Khasanov, O.L., Yur’ev, G.S., and Pakhomov, Yu.P., Dokl. Akad. Nauk, 2001, vol. 377, p. 797.Google Scholar
  45. 45.
    Elder, S.H., Cot, F.M., Su, Y., et al., J. Am. Chem. Soc., 2000, vol. 122, p. 5138.CrossRefGoogle Scholar
  46. 46.
    Urban, J.J., Yun, W.S., Gu, Q., and Park, H., J. Am. Chem. Soc., 2002, vol. 124, p. 1186.CrossRefGoogle Scholar
  47. 47.
    Cozzoli, P.D. and Kornowski, A.W.H., J. Am. Chem. Soc., 2003, vol. 125, p. 14539.CrossRefGoogle Scholar
  48. 48.
    Cheng, B., Russel, J.M., Shi, W., et al., J. Am. Chem. Soc., 2004, vol. 126, p. 5972.CrossRefGoogle Scholar
  49. 49.
    Gui, Z., Fan, R., Mo, W., et al., Chem. Mater., 2002, vol. 14, p. 5053.CrossRefGoogle Scholar
  50. 50.
    Liu, J., Li, Q., Wang, T., et al., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 5048.CrossRefGoogle Scholar
  51. 51.
    Guiton, B.S., Gu, Q., Prieto, A.L., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 498.CrossRefGoogle Scholar
  52. 52.
    Dai, Z.R., Pan, Z.W., and Wang, Z.L., Adv. Func. Mater., 2005, vol. 127, p. 9.Google Scholar
  53. 53.
    McConnell, W.P., Novak, J.P., Brousseau, L.C., III, et al., J. Phys. Chem. B, 2000, vol. 104, p. 8925.CrossRefGoogle Scholar
  54. 54.
    RF Patent 2195264.Google Scholar
  55. 55.
    Sergeev, G., Nauka i Tekhnologii v Promyshlennosti, 2005, vols. 3–4, p. 62.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations