Advertisement

Catalysis in Industry

, Volume 1, Issue 4, pp 322–347 | Cite as

Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors

  • E. V. Rebrov
Engineering Problems: Operation and Production

Abstract

Sol-gel hydrothermal synthesis is one of the most promising methods for the obtaining of zeolitic coatings (films, membranes) on the internal surface of channels of catalytic microstructured reactors. In this review, we discuss the basic methods for the synthesis of zeolite coatings, the processes that influence the rate of crystallization and crystal growth on a substrate, and the methods for modification of the substrate surface before the hydrothermal synthesis. By the example of the synthesis of β, A, and ZSM-5 zeolite coatings, it is shown that the hydrophilic behavior of the substrate and the presence of nano- and microroughness on it have a significant effect on the rate of nucleation of zeolite crystals and the homogeneity of obtained zeolite films. Depending on zeolite type and desired Si/Al ratio in the coating, by several examples. There exists a sufficiently narrow range of conditions (temperature, mixture heating rate, and ionic strength of solution) leading to zeolite coating formation on the substrate rather than to homogeneous crystallization in the authoclave volume. The fundamental mechanisms mechanisms responsible for the formation of zeolite coatings are presented. The acceleration of the hydrothermal synthesis under the action of microwave radiation is shown. The influence of different factors that should be taken into account to scale-up the hydrothermal synthesis is presented. Potential applications fields of microreactors and microadsorbers with zeolite coatings are discussed. Most industrial companies assign microtechnologies to the “high risk-high impact” group. The high risk is attributed, first of all, to the necessity of a cardinal change in the procedure sheet and to the application of new catalysts that allow an increasing rate of processes. Meanwhile, advantages of introduction of the new technologies—the basic ones being the reduction of energy consumption and significant decrease in the formation of by-products—allow companies to reduce operation costs.

Keywords

Zeolite Silicalite Zeolite Crystal Atomic Force Microscope Zeolite Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hessel, V., Löwe, H., Müller, A., and Kolb, G., Chemical Micro Process Engineering. Processing and Plants, Weinheim: Wiley-VCH Verlag, 2005.CrossRefGoogle Scholar
  2. 2.
    Hessel, V. and Löwe, H., Chem. Eng. Techhol., 2005, vol. 26, no. 5, p. 531.CrossRefGoogle Scholar
  3. 3.
    Hessel, V. and Löwe, H., Chem. Eng. Techhol., 2005, vol. 28, no. 3, p. 267.CrossRefGoogle Scholar
  4. 4.
    Rebrov, E.V., Seijger, G.B.F., et al., Appl. Catal., A, 2001, vol. 206, no. 1, p. 125.CrossRefGoogle Scholar
  5. 5.
    Mies, M.J.M., Rebrov, E.V., et al., J. Catal., 2007, vol. 247, no. 2, p. 328.CrossRefGoogle Scholar
  6. 6.
    Coronas, J. and Santamaria, J., Chem. Eng. Sci., 2004, vol. 59, nos. 22–23, p. 4879.Google Scholar
  7. 7.
    Urbiztondo, M.A., Valera, E., et al., J. Catal., 2007, vol. 250, no. 1, p. 190.CrossRefGoogle Scholar
  8. 8.
    Li, Z., Lew, C.M., et al., J. Phys. Chem. B, 2005, vol. 109, no. 18, p. 8652.CrossRefGoogle Scholar
  9. 9.
    Wang, Z.B., Mitra, A.P., et al., Adv. Mater., 2001, vol. 13, no. 19, p. 1463.CrossRefGoogle Scholar
  10. 10.
    Bonaccorsi, L. and Proverbio, E., Microporous Mesoporous Mater., 2004, vol. 74, nos. 1–3, p. 221.CrossRefGoogle Scholar
  11. 11.
    Zamaro, J.M., Ulla, M.A., and Miró, E.E., Appl. Catal., A, 2006, vol. 314, no. 1, p. 101.CrossRefGoogle Scholar
  12. 12.
    Lovallo, M.C., Tsapatsis, M., and Okubo, T., Chem. Mat., 1996, vol. 8, no. 8, p. 1579.CrossRefGoogle Scholar
  13. 13.
    Scandella, L., Binder, G., et al. Microporous Mesoporous Mater., 1998, vol. 21, no. 4, p. 403.CrossRefGoogle Scholar
  14. 14.
    Davis, M.E., Nature, 2002, vol. 417, no. 6891, p. 813.CrossRefGoogle Scholar
  15. 15.
    Li, L., Xue, B., et al., Appl. Catal., A, 2005, vol. 292, no. 1, p. 312.Google Scholar
  16. 16.
    Ulla, M.A., Mallada, R., et al., Appl. Catal., A, 2003, vol. 253, no. 1, p. 257.CrossRefGoogle Scholar
  17. 17.
    Öhrman, O., Hedlund, J., and Sterte, J., Appl. Catal., A, 2004, vol. 270, nos. 1–2, p. 193.Google Scholar
  18. 18.
    Bonaccorsi, L., Freni, A., et al., Microporous Mesoporous Mater., 2006, vol. 91, nos. 1–3, p. 7.CrossRefGoogle Scholar
  19. 19.
    van den Berg, A.W.C., Gora, L., Jansen, J.C., and Maschmeyer, T., Microporous Mesoporous Mater., 2003, vol. 66, nos. 2–3, p. 303.CrossRefGoogle Scholar
  20. 20.
    Maloncy, M.L., van den Berg, A.W.C., Gora, L., and Jansen, J.C., Microporous Mesoporous Mater., 2005, vol. 85, nos. 1–2, p. 96.CrossRefGoogle Scholar
  21. 21.
    Hedlund, J., Öhrman, O., et al., Chem. Eng. Sci., 2004, vol. 59, no. 13, p. 2647.CrossRefGoogle Scholar
  22. 22.
    Öhrman, O., Hedlund, J., Msimang, V., and Moller, K., Microporous Mesoporous Mater., 2005, vol. 78, nos. 2–3, p. 199.CrossRefGoogle Scholar
  23. 23.
    Louis, B., Reuse, P., Kiwi-Minsker, L., and Renken, A., Appl. Catal., A, 2001, vol. 210, nos. 1–2, p. 103.Google Scholar
  24. 24.
    Wloch, E., Lukaszczyk, A., Zurek, Z., and Sulikowski, B., Catal. Today, 2006, vol. 114, nos. 2–3, p. 231.CrossRefGoogle Scholar
  25. 25.
    Ulla, M.A., Mallada, R., et al., Appl. Catal., A, 2003, vol. 253, no. 1, p. 257.CrossRefGoogle Scholar
  26. 26.
    Lai, R., Yan, Y., and Gavalas, G.R., Microporous Mesoporous Mater., 2000, vol. 37, nos. 1–2, p. 9.CrossRefGoogle Scholar
  27. 27.
    Persson, A.E., Shoeman, B.J., Sterte, J., and Otterstedt, J.-E., Zeolites, 1995, vol. 15, no. 7, p. 611.CrossRefGoogle Scholar
  28. 28.
    Mintova, S., Valtchev, V., et al., Microporous Mesoporous Mater., 2006, vol. 90, nos. 1–3, p. 237.CrossRefGoogle Scholar
  29. 29.
    Mies, M.J.M., van den Bosch, J.L.P., et al., Catal. Today, 2005, vol. 110, nos. 1–2, p. 38.Google Scholar
  30. 30.
    Di Renzo, F., Catal. Today, 1998, vol. 41, nos. 1–3, p. 37.CrossRefGoogle Scholar
  31. 31.
    Feoktistova, N.N., Zhdanov, S.P., Lutz, W., and Bullow, M., Zeolites, 1989, vol. 9, no. 2, p. 136.CrossRefGoogle Scholar
  32. 32.
    Cundy, C.S., Löwe, B.M., and Sinclair, D.M.J., Faraday Discuss., 1993, vol. 95, p. 235.CrossRefGoogle Scholar
  33. 33.
    Schmidt, W., Toktarev, A., et al., Stud. Surf. Sci. Catal. (Proc. 13th Int. Zeolite Conf., Montpellier, 2001), Galarneau, A., Di Renzo, F., Fajula, F., and Vedrine, J., Eds., 2001, vol. 135, p. 190.Google Scholar
  34. 34.
    Erdem-Senatalar, A., Tatlier, M., and Urgen, M., Microporous Mesoporous Mater., 1999, vol. 32, no. 3, p. 331.CrossRefGoogle Scholar
  35. 35.
    Erdem-Senatalar, A., Oner, K., and Tatlier, M., Stud. Surf. Sci. Catal. (Proc. 14th Int. Zeolite Conf., Cape Town, 2004), van Steen, E., Callanan, L.H., and Claeys, M., Eds., 2004, vol. 154, p. 667.Google Scholar
  36. 36.
    Tatlier, M., Demir, M., et al., Microporous Mesoporous Mater., 2007, vol. 101, no. 3, p. 374.CrossRefGoogle Scholar
  37. 37.
    Andac, O., Telli, S.M., Tatlier, M., and Erdem-Senatalar, A., Microporous Mesoporous Mater., 2006, vol. 88, nos. 1–3, p. 72.CrossRefGoogle Scholar
  38. 38.
    Camblor, M.A., and Perez-Pariente, J., Zeolites, 1991, vol. 11, no. 3, p. 202.CrossRefGoogle Scholar
  39. 39.
    Mies, M.J.M., Rebrov, E.V., de Croon, M.H.J.M., and Schouten, J.C., Chem. Eng. J., 2004, vol. 101, nos. 1–3, p. 225.CrossRefGoogle Scholar
  40. 40.
    Rebrov, E.V., de Croon, M.H.J.M., and Schouten, J.C., Catal. Today, 2001, vol. 69, nos. 1–4, p. 183.CrossRefGoogle Scholar
  41. 41.
    Groppi, G., Ibashi, W., Tronconi, E., and Forzatti, P., Chem. Eng. J., 2001, vol. 82, nos. 1–3, p. 57.CrossRefGoogle Scholar
  42. 42.
    Kuznetsov, S.A., Kuznetsova, S.V., et al., Surf. Coat. Technol., 2005, vol. 195, nos. 2–3, p. 182.CrossRefGoogle Scholar
  43. 43.
    Kuznetsov, S.A., Rebrov, E.V., et al., Surf. Coat. Technol., 2006, vol. 201, nos. 3–4, p. 971.CrossRefGoogle Scholar
  44. 44.
    Groner, M.D., Elam, J.W., Fabreguette, F.H., and George, S.M., Thin Solid Films, 2002, vol. 413, nos. 1–2, p. 186.CrossRefGoogle Scholar
  45. 45.
    Hoivik, N.D., Elam, J.W., et al., Sens. Actuators, A, 2003, vol. 103, nos. 1–2, p. 100.Google Scholar
  46. 46.
    Muraza, O., Rebrov, E.V., et al., Chem. Eng. J., 2008, vol. 135, no. 1, p. 117.CrossRefGoogle Scholar
  47. 47.
    Valtchev, V., Mintova, S., and Konstantinov, L., Zeolites, 1995, vol. 15, no. 8, p. 679.CrossRefGoogle Scholar
  48. 48.
    Valtchev, V. and Mintova, S., Zeolites, 1995, vol. 15, no. 2, p. 171.CrossRefGoogle Scholar
  49. 49.
    Mies, M.J.M., Rebrov, E.V., et al., Microporous Mesoporous Mater., 2007, vol. 106, nos. 1–3, p. 95.CrossRefGoogle Scholar
  50. 50.
    Munoz, R.A., Beving, D., and Yan, Y.S., Ind. Eng. Chem. Res., 2005, vol. 44, no. 12, p. 4310.CrossRefGoogle Scholar
  51. 51.
    Orvis, K.H. and Grissino-Mayer, H.D., Tree-Ring Res., 2002, vol. 58, nos. 1–2, p. 47.Google Scholar
  52. 52.
    Check, J., Karuppiah, K.S.K., and Sundararajan, S., J. Biomed. Mater. Res., Part A, 2005, vol. 74, no. 4, p. 687.CrossRefGoogle Scholar
  53. 53.
    Kim, H., J. Vac. Sci. Technol., B, 2003, vol. 21, no. 6, p. 2231.CrossRefGoogle Scholar
  54. 54.
    Niinisto, L., Paivasaari, J., et al., Phys. Status Solidi A, 2004, vol. 201, no. 7, p. 1443.CrossRefGoogle Scholar
  55. 55.
    Krautheim, G., Hecht, T., et al., Appl. Surf. Sci., 2005, vol. 252, no. 1, p. 200.CrossRefGoogle Scholar
  56. 56.
    Ritala, M., Leskela, M., et al., Thin Solid Films, 1993, vol. 225, nos. 1–2, p. 288.CrossRefGoogle Scholar
  57. 57.
    Sirghi, L. and Hatanaka, Y., Surf. Sci., 2003, vol. 530, no. 3, p. L323.CrossRefGoogle Scholar
  58. 58.
    Wang, X., Yu, Y., Hu, X., and Gao, L., Thin Solid Films, 2000, vol. 371, nos. 1–2, p. 148.CrossRefGoogle Scholar
  59. 59.
    Clet, G., Jansen, J.C., and van Bekkum, H., Chem. Mater., 1999, vol. 11, no. 7, p. 1696.CrossRefGoogle Scholar
  60. 60.
    Oudshoorn, O.L., Zeolitic Coatings Applied in Structured Catalyst Packings, Ph.D. Thesis, Delft University of Technology, 1998.Google Scholar
  61. 61.
    Cundy, C.S. and Cox, P.A., Microporous Mesoporous Mater., 2005, vol. 82, nos. 1–2, p. 1.CrossRefGoogle Scholar
  62. 62.
    De Moor, P.P.E.A., Beelen, T.P.M., et al., Chem. Mater., 1999, vol. 11, no. 1, p. 36.CrossRefGoogle Scholar
  63. 63.
    Slangen, P.M., Jansen, J.C., and van Bekkum, H., Microporous Mesoporous Mater., 1997, vol. 9, nos. 5–6, p. 259.Google Scholar
  64. 64.
    Koegler, J.H., van Bekkum, H., and Jansen, J.C., Zeolites, 1997, vol. 19, no. 4, p. 262.CrossRefGoogle Scholar
  65. 65.
    den Exter, M.J., van Bekkum, H., et al., Zeolites, 1997, vol. 19, no. 1, p. 13.CrossRefGoogle Scholar
  66. 66.
    De Moor, P.P.E.A., The Mechanism of Organic-Mediated Zeolite Crystallization, Ph.D. Thesis, Eindhoven University of Technology, 1998.Google Scholar
  67. 67.
    De Moor, P.P.E.A., Beelen, T.P.M., et al., Chem.-Eur. J., 1999, vol. 5, no. 7, p. 2083.CrossRefGoogle Scholar
  68. 68.
    Perez-Parient, J., Martens, J.A., and Jacobs, P.A., Zeolites, 1988, vol. 8, no. 1, p. 46.CrossRefGoogle Scholar
  69. 69.
    Yan, Y., Chaudhuri, S.R., and Sarkar, A., Chem. Mater.,. 1996, vol. 8, no. 2, p. 473.CrossRefGoogle Scholar
  70. 70.
    Kappe, C.O., Angew. Chem., Int. Ed., 2004, vol. 43, no. 46, p. 6250.CrossRefGoogle Scholar
  71. 71.
    Arafat, A., Jansen, J.C., Ebaid, A.R., and van Bekkum, H., Zeolites, 1993, vol. 13, no. 3, p. 162.CrossRefGoogle Scholar
  72. 72.
    Li, Y. and Yang, W., J. Membr. Sci.,. 2008, vol. 316, nos. 1–2, p. 3.CrossRefGoogle Scholar
  73. 73.
    Hwang, Y.K., Lee, U.H., et al., Chem. Lett., 2005, vol. 34, no. 12, p. 1596.CrossRefGoogle Scholar
  74. 74.
    Koegler, J.H., Arafat, A., van Bekkum, H., and Jansen, J.C., Stud. Surf. Sci. Catal. (Proc. 11th Int. Zeolite Conf., Seoul, 1996), Chon, H., Ihm, S.-K., and Uh, Y.S., Eds., 1997, vol. 105, no. 3, p. 2163.Google Scholar
  75. 75.
    Madhusoodana, C.D., Das, R.N., Kameshima, Y., and Okada, K., J. Mater. Sci., 2006, vol. 41, no. 5, p. 1481.CrossRefGoogle Scholar
  76. 76.
    Motuzas, J., Julbe, A., et al., Microporous Mesoporous Mater.,. 2006, vol. 92, nos. 1–3, p. 259.CrossRefGoogle Scholar
  77. 77.
    Motuzas, J., Heng, S., et al., Microporous Mesoporous Mater.,. 2007, vol. 99, nos. 1–2, p. 197.CrossRefGoogle Scholar
  78. 78.
    Tang, Z., Kim, S.-J., Gu, X., and Dong, J., Microporous Mesoporous Mater., 2009, vol. 118, nos. 1–3, p. 224.CrossRefGoogle Scholar
  79. 79.
    Cundy, C.S., Collect. Czech. Chem. Commun., 1998, vol. 63, no. 11, p. 1699.CrossRefGoogle Scholar
  80. 80.
    Kim, D.-S., Chang, J.-S., et al., Microporous Mesoporous Mater., 2004, vol. 68, nos. 1–3, p. 77.CrossRefGoogle Scholar
  81. 81.
    Coutinho, D., Losilla, J.A., and Balkus, K.J., Jr., Microporous Mesoporous Mater., 2006, vol. 90, nos. 1–3, p. 229.CrossRefGoogle Scholar
  82. 82.
    Noack, M., Kolsch, P., et al., Microporous Mesoporous Mater., 2000, vols. 35–36, no. 1, p. 253.CrossRefGoogle Scholar
  83. 83.
    Van de Graaf, J.M., van der Bijl, E., et al., Ind. Eng. Chem. Res., 1998, vol. 37, no. 10, p. 4071.CrossRefGoogle Scholar
  84. 84.
    Au, L.T.Y. and Yeung, K.L., J. Membr. Sci.,. 2001, vol. 194, no. 1, p. 33.CrossRefGoogle Scholar
  85. 85.
    Wong, W.C., Au, L.T.Y., Ariso, C.T., and Yeung, K.L., J. Membr. Sci., 2001, vol. 191, nos. 1–2, p. 143.CrossRefGoogle Scholar
  86. 86.
    Li, Y., Zhang, X., and Wang, J., Sep. Purif. Technol., 2001, vol. 25, nos. 1–3, p. 459.CrossRefGoogle Scholar
  87. 87.
    Xu, X., Yang, W., Liu, J., and Lin, L., Adv. Mater., 2000, vol. 12, no. 3, p. 195.CrossRefGoogle Scholar
  88. 88.
    Shan, Z., van Kooten, W.E.J., et al., Microporous Mesoporous Mater., 2000, vol. 34, no. 1, p. 81.CrossRefGoogle Scholar
  89. 89.
    Mies, M.J.M., Rebrov, E.V., et al., Chem. Eng. Sci., 2007, vol. 62, nos. 18–20, p. 5097.Google Scholar
  90. 90.
    Yuranov, I., Renken, A., and Kiwi-Minsker, L., Appl. Catal., A, 2005, vol. 281, nos. 1–2, p. 55.Google Scholar
  91. 91.
    Nikolajsen, K., Kiwi-Minsker, L., and Renken, A., Chem. Eng. Res. Des., 2006, vol. 84, no. 7, p. 562.CrossRefGoogle Scholar
  92. 92.
    Barbieri, G., Marigliano, G., Golemme, G., and Drioli, E., Chem. Eng. J., 2002, vol. 85, no. 1, p. 53.CrossRefGoogle Scholar
  93. 93.
    Piera, E., Salomon, M.A., et al., J. Membr. Sci., 1998, vol. 149, no. 1, p. 99.CrossRefGoogle Scholar
  94. 94.
    Piera, E., Tellez, C., et al., Catal. Today, 2001, vol. 67, nos. 1–3, p. 127.CrossRefGoogle Scholar
  95. 95.
    Van de Graaf, J.M., Zwiep, M., Kapteijn, F., and Moulijn, J.A., Chem. Eng. Sci., 1999, vol. 54, no. 10, p. 1441.CrossRefGoogle Scholar
  96. 96.
    Van de Graaf, J.M., Kapteijn, F., and Moulijn, J.A., J. Membr. Sci.,. 1998, vol. 144, nos. 1–2, p. 87.CrossRefGoogle Scholar
  97. 97.
    Hasegawa, Y., Kusakabe, K., and Morooka, S., J. Membr. Sci.,. 2001, vol. 190, no. 1, p. 1.CrossRefGoogle Scholar
  98. 98.
    Yang, G., Zhang, X., et al., J. Phys. Chem. Solids, 2007, vol. 68, no. 1, p. 26.CrossRefGoogle Scholar
  99. 99.
    Wan, Y.S.S., Gavriilidis, A., and Yeung, K.L., Chem. Eng. Res. Des., 2003, vol. 81, no. 7, p. 753.CrossRefGoogle Scholar
  100. 100.
    Wan, Y.S.S., Chau, J.L.H., Yeung, K.L., and Gavriilidis, A., J. Catal., 2004, vol. 223, no. 2, p. 241.CrossRefGoogle Scholar
  101. 101.
    Wan, Y.S.S., Yeung, K.L., and Gavriilidis, A., Appl. Catal., A, 2005, vol. 281, nos. 1–2, p. 285.Google Scholar
  102. 102.
    Gontier, S. and Tuel, A., Appl. Catal., A, 1994, vol. 118, no. 2, p. 173.CrossRefGoogle Scholar
  103. 103.
    Lai, S.M., Ng, C.P., Martin-Aranda, R., and Yeung, K.L., Microporous Mesoporous Mater., 2003, vol. 66, nos. 2–3, p. 239.CrossRefGoogle Scholar
  104. 104.
    Lau, W.N., Zhang, X.F., Yeung, K.L., and Martin-Aranda, R., Stud. Surf. Sci. Catal. (Proc. 3rd Int. Zeolite Symp., Prague, 2005), Ceijka, J., Zilkova, N., and Nachtigall, P., Eds., 2005, vol. 158, no. 2, p. 1335.Google Scholar
  105. 105.
    Zhang, X, Lai, S.-M., Martin-Aranda, R., and Yeung, K.-L., Appl. Catal., A, 2004, vol. 261, no. 1, p. 109.CrossRefGoogle Scholar
  106. 106.
    Lau, W.N., Yeung, K.L., Zhang, X.F., and Martin-Aranda, R., Stud. Surf. Sci. Catal. (Proc. 15th Int. Zeolite Conf., Beijing, 2007), Xu, R., Chen, J., Gao, Zi, and Yan, W., Eds., 2007, vol. 170, p. 1460.Google Scholar
  107. 107.
    McDonnell, A.M.P., Beving, D., et al., Adv. Funct. Mater., 2005, vol. 15, no. 2, p. 336.CrossRefGoogle Scholar
  108. 108.
    Beving, D.E., O’Neill, C.R., and Yan, Y., Microporous Mesoporous. Mater., 2008, vol. 108, nos. 1–3, p. 77.CrossRefGoogle Scholar
  109. 109.
    Yan, Y.S., US Patent 7179547, 2007.Google Scholar
  110. 110.
    O’Neill, C., Beving, D.E., Chen, W., and Yan, Y.S., AIChe J., 2006, vol. 52, no. 3, p.1157.CrossRefGoogle Scholar
  111. 111.
    Stein, C., King, T.R., Wilson, W.G., and Robertson, R., Optical Systems Contamination and Degradation, Proc. SPIE, Chen, P.T., McClintock, W.E., and Rottman, G.J., Eds., vol. 3427, p. 56.Google Scholar
  112. 112.
    Perry, J.L., Trace Contaminant Generation Rates for Spacecraft Contamination Control System Design. NASA Technical Memorandum 108497, National Aeronautics and Space Administration, Alabama: Marshall Space Flight Center, 1995.Google Scholar
  113. 113.
    Thomson, S.R., Hansen, P.A., et al., Incorporation of Molecular Adsorbers into Future Hubble Space Telescope Instruments, Proc. SPIE, Glassford, P.M., Breault, R.P., and Pompea, S.M., Eds., vol. 2864, p. 44.Google Scholar
  114. 114.
    Mies, M.J.M., Application of Zeolitic Coatings in Microstructured Reactors, Ph.D. Thesis, Eindhoven University of Technology, 2006.Google Scholar
  115. 115.
    Hogan, J., Nature, 2006, vol. 442, no. 7101, p. 351.CrossRefGoogle Scholar
  116. 116.
    Reisch, M., Chem. Eng. News, 2004, vol. 82, no. 35, p. 9.Google Scholar
  117. 117.
    Rouhi, A.M., Chem. Eng. News, 2004, vol. 82, no. 27, p. 18.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations