Skip to main content
Log in

Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors

  • Engineering Problems: Operation and Production
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Sol-gel hydrothermal synthesis is one of the most promising methods for the obtaining of zeolitic coatings (films, membranes) on the internal surface of channels of catalytic microstructured reactors. In this review, we discuss the basic methods for the synthesis of zeolite coatings, the processes that influence the rate of crystallization and crystal growth on a substrate, and the methods for modification of the substrate surface before the hydrothermal synthesis. By the example of the synthesis of β, A, and ZSM-5 zeolite coatings, it is shown that the hydrophilic behavior of the substrate and the presence of nano- and microroughness on it have a significant effect on the rate of nucleation of zeolite crystals and the homogeneity of obtained zeolite films. Depending on zeolite type and desired Si/Al ratio in the coating, by several examples. There exists a sufficiently narrow range of conditions (temperature, mixture heating rate, and ionic strength of solution) leading to zeolite coating formation on the substrate rather than to homogeneous crystallization in the authoclave volume. The fundamental mechanisms mechanisms responsible for the formation of zeolite coatings are presented. The acceleration of the hydrothermal synthesis under the action of microwave radiation is shown. The influence of different factors that should be taken into account to scale-up the hydrothermal synthesis is presented. Potential applications fields of microreactors and microadsorbers with zeolite coatings are discussed. Most industrial companies assign microtechnologies to the “high risk-high impact” group. The high risk is attributed, first of all, to the necessity of a cardinal change in the procedure sheet and to the application of new catalysts that allow an increasing rate of processes. Meanwhile, advantages of introduction of the new technologies—the basic ones being the reduction of energy consumption and significant decrease in the formation of by-products—allow companies to reduce operation costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hessel, V., Löwe, H., Müller, A., and Kolb, G., Chemical Micro Process Engineering. Processing and Plants, Weinheim: Wiley-VCH Verlag, 2005.

    Book  Google Scholar 

  2. Hessel, V. and Löwe, H., Chem. Eng. Techhol., 2005, vol. 26, no. 5, p. 531.

    Article  Google Scholar 

  3. Hessel, V. and Löwe, H., Chem. Eng. Techhol., 2005, vol. 28, no. 3, p. 267.

    Article  CAS  Google Scholar 

  4. Rebrov, E.V., Seijger, G.B.F., et al., Appl. Catal., A, 2001, vol. 206, no. 1, p. 125.

    Article  CAS  Google Scholar 

  5. Mies, M.J.M., Rebrov, E.V., et al., J. Catal., 2007, vol. 247, no. 2, p. 328.

    Article  CAS  Google Scholar 

  6. Coronas, J. and Santamaria, J., Chem. Eng. Sci., 2004, vol. 59, nos. 22–23, p. 4879.

    CAS  Google Scholar 

  7. Urbiztondo, M.A., Valera, E., et al., J. Catal., 2007, vol. 250, no. 1, p. 190.

    Article  CAS  Google Scholar 

  8. Li, Z., Lew, C.M., et al., J. Phys. Chem. B, 2005, vol. 109, no. 18, p. 8652.

    Article  CAS  Google Scholar 

  9. Wang, Z.B., Mitra, A.P., et al., Adv. Mater., 2001, vol. 13, no. 19, p. 1463.

    Article  CAS  Google Scholar 

  10. Bonaccorsi, L. and Proverbio, E., Microporous Mesoporous Mater., 2004, vol. 74, nos. 1–3, p. 221.

    Article  CAS  Google Scholar 

  11. Zamaro, J.M., Ulla, M.A., and Miró, E.E., Appl. Catal., A, 2006, vol. 314, no. 1, p. 101.

    Article  CAS  Google Scholar 

  12. Lovallo, M.C., Tsapatsis, M., and Okubo, T., Chem. Mat., 1996, vol. 8, no. 8, p. 1579.

    Article  CAS  Google Scholar 

  13. Scandella, L., Binder, G., et al. Microporous Mesoporous Mater., 1998, vol. 21, no. 4, p. 403.

    Article  CAS  Google Scholar 

  14. Davis, M.E., Nature, 2002, vol. 417, no. 6891, p. 813.

    Article  CAS  Google Scholar 

  15. Li, L., Xue, B., et al., Appl. Catal., A, 2005, vol. 292, no. 1, p. 312.

    CAS  Google Scholar 

  16. Ulla, M.A., Mallada, R., et al., Appl. Catal., A, 2003, vol. 253, no. 1, p. 257.

    Article  CAS  Google Scholar 

  17. Öhrman, O., Hedlund, J., and Sterte, J., Appl. Catal., A, 2004, vol. 270, nos. 1–2, p. 193.

    Google Scholar 

  18. Bonaccorsi, L., Freni, A., et al., Microporous Mesoporous Mater., 2006, vol. 91, nos. 1–3, p. 7.

    Article  CAS  Google Scholar 

  19. van den Berg, A.W.C., Gora, L., Jansen, J.C., and Maschmeyer, T., Microporous Mesoporous Mater., 2003, vol. 66, nos. 2–3, p. 303.

    Article  CAS  Google Scholar 

  20. Maloncy, M.L., van den Berg, A.W.C., Gora, L., and Jansen, J.C., Microporous Mesoporous Mater., 2005, vol. 85, nos. 1–2, p. 96.

    Article  CAS  Google Scholar 

  21. Hedlund, J., Öhrman, O., et al., Chem. Eng. Sci., 2004, vol. 59, no. 13, p. 2647.

    Article  CAS  Google Scholar 

  22. Öhrman, O., Hedlund, J., Msimang, V., and Moller, K., Microporous Mesoporous Mater., 2005, vol. 78, nos. 2–3, p. 199.

    Article  CAS  Google Scholar 

  23. Louis, B., Reuse, P., Kiwi-Minsker, L., and Renken, A., Appl. Catal., A, 2001, vol. 210, nos. 1–2, p. 103.

    CAS  Google Scholar 

  24. Wloch, E., Lukaszczyk, A., Zurek, Z., and Sulikowski, B., Catal. Today, 2006, vol. 114, nos. 2–3, p. 231.

    Article  CAS  Google Scholar 

  25. Ulla, M.A., Mallada, R., et al., Appl. Catal., A, 2003, vol. 253, no. 1, p. 257.

    Article  CAS  Google Scholar 

  26. Lai, R., Yan, Y., and Gavalas, G.R., Microporous Mesoporous Mater., 2000, vol. 37, nos. 1–2, p. 9.

    Article  CAS  Google Scholar 

  27. Persson, A.E., Shoeman, B.J., Sterte, J., and Otterstedt, J.-E., Zeolites, 1995, vol. 15, no. 7, p. 611.

    Article  CAS  Google Scholar 

  28. Mintova, S., Valtchev, V., et al., Microporous Mesoporous Mater., 2006, vol. 90, nos. 1–3, p. 237.

    Article  CAS  Google Scholar 

  29. Mies, M.J.M., van den Bosch, J.L.P., et al., Catal. Today, 2005, vol. 110, nos. 1–2, p. 38.

    CAS  Google Scholar 

  30. Di Renzo, F., Catal. Today, 1998, vol. 41, nos. 1–3, p. 37.

    Article  Google Scholar 

  31. Feoktistova, N.N., Zhdanov, S.P., Lutz, W., and Bullow, M., Zeolites, 1989, vol. 9, no. 2, p. 136.

    Article  CAS  Google Scholar 

  32. Cundy, C.S., Löwe, B.M., and Sinclair, D.M.J., Faraday Discuss., 1993, vol. 95, p. 235.

    Article  CAS  Google Scholar 

  33. Schmidt, W., Toktarev, A., et al., Stud. Surf. Sci. Catal. (Proc. 13th Int. Zeolite Conf., Montpellier, 2001), Galarneau, A., Di Renzo, F., Fajula, F., and Vedrine, J., Eds., 2001, vol. 135, p. 190.

  34. Erdem-Senatalar, A., Tatlier, M., and Urgen, M., Microporous Mesoporous Mater., 1999, vol. 32, no. 3, p. 331.

    Article  CAS  Google Scholar 

  35. Erdem-Senatalar, A., Oner, K., and Tatlier, M., Stud. Surf. Sci. Catal. (Proc. 14th Int. Zeolite Conf., Cape Town, 2004), van Steen, E., Callanan, L.H., and Claeys, M., Eds., 2004, vol. 154, p. 667.

  36. Tatlier, M., Demir, M., et al., Microporous Mesoporous Mater., 2007, vol. 101, no. 3, p. 374.

    Article  CAS  Google Scholar 

  37. Andac, O., Telli, S.M., Tatlier, M., and Erdem-Senatalar, A., Microporous Mesoporous Mater., 2006, vol. 88, nos. 1–3, p. 72.

    Article  CAS  Google Scholar 

  38. Camblor, M.A., and Perez-Pariente, J., Zeolites, 1991, vol. 11, no. 3, p. 202.

    Article  CAS  Google Scholar 

  39. Mies, M.J.M., Rebrov, E.V., de Croon, M.H.J.M., and Schouten, J.C., Chem. Eng. J., 2004, vol. 101, nos. 1–3, p. 225.

    Article  CAS  Google Scholar 

  40. Rebrov, E.V., de Croon, M.H.J.M., and Schouten, J.C., Catal. Today, 2001, vol. 69, nos. 1–4, p. 183.

    Article  CAS  Google Scholar 

  41. Groppi, G., Ibashi, W., Tronconi, E., and Forzatti, P., Chem. Eng. J., 2001, vol. 82, nos. 1–3, p. 57.

    Article  CAS  Google Scholar 

  42. Kuznetsov, S.A., Kuznetsova, S.V., et al., Surf. Coat. Technol., 2005, vol. 195, nos. 2–3, p. 182.

    Article  CAS  Google Scholar 

  43. Kuznetsov, S.A., Rebrov, E.V., et al., Surf. Coat. Technol., 2006, vol. 201, nos. 3–4, p. 971.

    Article  CAS  Google Scholar 

  44. Groner, M.D., Elam, J.W., Fabreguette, F.H., and George, S.M., Thin Solid Films, 2002, vol. 413, nos. 1–2, p. 186.

    Article  CAS  Google Scholar 

  45. Hoivik, N.D., Elam, J.W., et al., Sens. Actuators, A, 2003, vol. 103, nos. 1–2, p. 100.

    Google Scholar 

  46. Muraza, O., Rebrov, E.V., et al., Chem. Eng. J., 2008, vol. 135, no. 1, p. 117.

    Article  CAS  Google Scholar 

  47. Valtchev, V., Mintova, S., and Konstantinov, L., Zeolites, 1995, vol. 15, no. 8, p. 679.

    Article  CAS  Google Scholar 

  48. Valtchev, V. and Mintova, S., Zeolites, 1995, vol. 15, no. 2, p. 171.

    Article  CAS  Google Scholar 

  49. Mies, M.J.M., Rebrov, E.V., et al., Microporous Mesoporous Mater., 2007, vol. 106, nos. 1–3, p. 95.

    Article  CAS  Google Scholar 

  50. Munoz, R.A., Beving, D., and Yan, Y.S., Ind. Eng. Chem. Res., 2005, vol. 44, no. 12, p. 4310.

    Article  CAS  Google Scholar 

  51. Orvis, K.H. and Grissino-Mayer, H.D., Tree-Ring Res., 2002, vol. 58, nos. 1–2, p. 47.

    Google Scholar 

  52. Check, J., Karuppiah, K.S.K., and Sundararajan, S., J. Biomed. Mater. Res., Part A, 2005, vol. 74, no. 4, p. 687.

    Article  CAS  Google Scholar 

  53. Kim, H., J. Vac. Sci. Technol., B, 2003, vol. 21, no. 6, p. 2231.

    Article  CAS  Google Scholar 

  54. Niinisto, L., Paivasaari, J., et al., Phys. Status Solidi A, 2004, vol. 201, no. 7, p. 1443.

    Article  CAS  Google Scholar 

  55. Krautheim, G., Hecht, T., et al., Appl. Surf. Sci., 2005, vol. 252, no. 1, p. 200.

    Article  CAS  Google Scholar 

  56. Ritala, M., Leskela, M., et al., Thin Solid Films, 1993, vol. 225, nos. 1–2, p. 288.

    Article  CAS  Google Scholar 

  57. Sirghi, L. and Hatanaka, Y., Surf. Sci., 2003, vol. 530, no. 3, p. L323.

    Article  CAS  Google Scholar 

  58. Wang, X., Yu, Y., Hu, X., and Gao, L., Thin Solid Films, 2000, vol. 371, nos. 1–2, p. 148.

    Article  CAS  Google Scholar 

  59. Clet, G., Jansen, J.C., and van Bekkum, H., Chem. Mater., 1999, vol. 11, no. 7, p. 1696.

    Article  CAS  Google Scholar 

  60. Oudshoorn, O.L., Zeolitic Coatings Applied in Structured Catalyst Packings, Ph.D. Thesis, Delft University of Technology, 1998.

  61. Cundy, C.S. and Cox, P.A., Microporous Mesoporous Mater., 2005, vol. 82, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  62. De Moor, P.P.E.A., Beelen, T.P.M., et al., Chem. Mater., 1999, vol. 11, no. 1, p. 36.

    Article  Google Scholar 

  63. Slangen, P.M., Jansen, J.C., and van Bekkum, H., Microporous Mesoporous Mater., 1997, vol. 9, nos. 5–6, p. 259.

    CAS  Google Scholar 

  64. Koegler, J.H., van Bekkum, H., and Jansen, J.C., Zeolites, 1997, vol. 19, no. 4, p. 262.

    Article  CAS  Google Scholar 

  65. den Exter, M.J., van Bekkum, H., et al., Zeolites, 1997, vol. 19, no. 1, p. 13.

    Article  Google Scholar 

  66. De Moor, P.P.E.A., The Mechanism of Organic-Mediated Zeolite Crystallization, Ph.D. Thesis, Eindhoven University of Technology, 1998.

  67. De Moor, P.P.E.A., Beelen, T.P.M., et al., Chem.-Eur. J., 1999, vol. 5, no. 7, p. 2083.

    Article  Google Scholar 

  68. Perez-Parient, J., Martens, J.A., and Jacobs, P.A., Zeolites, 1988, vol. 8, no. 1, p. 46.

    Article  Google Scholar 

  69. Yan, Y., Chaudhuri, S.R., and Sarkar, A., Chem. Mater.,. 1996, vol. 8, no. 2, p. 473.

    Article  CAS  Google Scholar 

  70. Kappe, C.O., Angew. Chem., Int. Ed., 2004, vol. 43, no. 46, p. 6250.

    Article  CAS  Google Scholar 

  71. Arafat, A., Jansen, J.C., Ebaid, A.R., and van Bekkum, H., Zeolites, 1993, vol. 13, no. 3, p. 162.

    Article  CAS  Google Scholar 

  72. Li, Y. and Yang, W., J. Membr. Sci.,. 2008, vol. 316, nos. 1–2, p. 3.

    Article  CAS  Google Scholar 

  73. Hwang, Y.K., Lee, U.H., et al., Chem. Lett., 2005, vol. 34, no. 12, p. 1596.

    Article  CAS  Google Scholar 

  74. Koegler, J.H., Arafat, A., van Bekkum, H., and Jansen, J.C., Stud. Surf. Sci. Catal. (Proc. 11th Int. Zeolite Conf., Seoul, 1996), Chon, H., Ihm, S.-K., and Uh, Y.S., Eds., 1997, vol. 105, no. 3, p. 2163.

  75. Madhusoodana, C.D., Das, R.N., Kameshima, Y., and Okada, K., J. Mater. Sci., 2006, vol. 41, no. 5, p. 1481.

    Article  CAS  Google Scholar 

  76. Motuzas, J., Julbe, A., et al., Microporous Mesoporous Mater.,. 2006, vol. 92, nos. 1–3, p. 259.

    Article  CAS  Google Scholar 

  77. Motuzas, J., Heng, S., et al., Microporous Mesoporous Mater.,. 2007, vol. 99, nos. 1–2, p. 197.

    Article  CAS  Google Scholar 

  78. Tang, Z., Kim, S.-J., Gu, X., and Dong, J., Microporous Mesoporous Mater., 2009, vol. 118, nos. 1–3, p. 224.

    Article  CAS  Google Scholar 

  79. Cundy, C.S., Collect. Czech. Chem. Commun., 1998, vol. 63, no. 11, p. 1699.

    Article  CAS  Google Scholar 

  80. Kim, D.-S., Chang, J.-S., et al., Microporous Mesoporous Mater., 2004, vol. 68, nos. 1–3, p. 77.

    Article  CAS  Google Scholar 

  81. Coutinho, D., Losilla, J.A., and Balkus, K.J., Jr., Microporous Mesoporous Mater., 2006, vol. 90, nos. 1–3, p. 229.

    Article  CAS  Google Scholar 

  82. Noack, M., Kolsch, P., et al., Microporous Mesoporous Mater., 2000, vols. 35–36, no. 1, p. 253.

    Article  Google Scholar 

  83. Van de Graaf, J.M., van der Bijl, E., et al., Ind. Eng. Chem. Res., 1998, vol. 37, no. 10, p. 4071.

    Article  Google Scholar 

  84. Au, L.T.Y. and Yeung, K.L., J. Membr. Sci.,. 2001, vol. 194, no. 1, p. 33.

    Article  CAS  Google Scholar 

  85. Wong, W.C., Au, L.T.Y., Ariso, C.T., and Yeung, K.L., J. Membr. Sci., 2001, vol. 191, nos. 1–2, p. 143.

    Article  CAS  Google Scholar 

  86. Li, Y., Zhang, X., and Wang, J., Sep. Purif. Technol., 2001, vol. 25, nos. 1–3, p. 459.

    Article  CAS  Google Scholar 

  87. Xu, X., Yang, W., Liu, J., and Lin, L., Adv. Mater., 2000, vol. 12, no. 3, p. 195.

    Article  CAS  Google Scholar 

  88. Shan, Z., van Kooten, W.E.J., et al., Microporous Mesoporous Mater., 2000, vol. 34, no. 1, p. 81.

    Article  CAS  Google Scholar 

  89. Mies, M.J.M., Rebrov, E.V., et al., Chem. Eng. Sci., 2007, vol. 62, nos. 18–20, p. 5097.

    CAS  Google Scholar 

  90. Yuranov, I., Renken, A., and Kiwi-Minsker, L., Appl. Catal., A, 2005, vol. 281, nos. 1–2, p. 55.

    CAS  Google Scholar 

  91. Nikolajsen, K., Kiwi-Minsker, L., and Renken, A., Chem. Eng. Res. Des., 2006, vol. 84, no. 7, p. 562.

    Article  CAS  Google Scholar 

  92. Barbieri, G., Marigliano, G., Golemme, G., and Drioli, E., Chem. Eng. J., 2002, vol. 85, no. 1, p. 53.

    Article  CAS  Google Scholar 

  93. Piera, E., Salomon, M.A., et al., J. Membr. Sci., 1998, vol. 149, no. 1, p. 99.

    Article  CAS  Google Scholar 

  94. Piera, E., Tellez, C., et al., Catal. Today, 2001, vol. 67, nos. 1–3, p. 127.

    Article  CAS  Google Scholar 

  95. Van de Graaf, J.M., Zwiep, M., Kapteijn, F., and Moulijn, J.A., Chem. Eng. Sci., 1999, vol. 54, no. 10, p. 1441.

    Article  Google Scholar 

  96. Van de Graaf, J.M., Kapteijn, F., and Moulijn, J.A., J. Membr. Sci.,. 1998, vol. 144, nos. 1–2, p. 87.

    Article  Google Scholar 

  97. Hasegawa, Y., Kusakabe, K., and Morooka, S., J. Membr. Sci.,. 2001, vol. 190, no. 1, p. 1.

    Article  CAS  Google Scholar 

  98. Yang, G., Zhang, X., et al., J. Phys. Chem. Solids, 2007, vol. 68, no. 1, p. 26.

    Article  CAS  Google Scholar 

  99. Wan, Y.S.S., Gavriilidis, A., and Yeung, K.L., Chem. Eng. Res. Des., 2003, vol. 81, no. 7, p. 753.

    Article  CAS  Google Scholar 

  100. Wan, Y.S.S., Chau, J.L.H., Yeung, K.L., and Gavriilidis, A., J. Catal., 2004, vol. 223, no. 2, p. 241.

    Article  CAS  Google Scholar 

  101. Wan, Y.S.S., Yeung, K.L., and Gavriilidis, A., Appl. Catal., A, 2005, vol. 281, nos. 1–2, p. 285.

    CAS  Google Scholar 

  102. Gontier, S. and Tuel, A., Appl. Catal., A, 1994, vol. 118, no. 2, p. 173.

    Article  CAS  Google Scholar 

  103. Lai, S.M., Ng, C.P., Martin-Aranda, R., and Yeung, K.L., Microporous Mesoporous Mater., 2003, vol. 66, nos. 2–3, p. 239.

    Article  CAS  Google Scholar 

  104. Lau, W.N., Zhang, X.F., Yeung, K.L., and Martin-Aranda, R., Stud. Surf. Sci. Catal. (Proc. 3rd Int. Zeolite Symp., Prague, 2005), Ceijka, J., Zilkova, N., and Nachtigall, P., Eds., 2005, vol. 158, no. 2, p. 1335.

  105. Zhang, X, Lai, S.-M., Martin-Aranda, R., and Yeung, K.-L., Appl. Catal., A, 2004, vol. 261, no. 1, p. 109.

    Article  CAS  Google Scholar 

  106. Lau, W.N., Yeung, K.L., Zhang, X.F., and Martin-Aranda, R., Stud. Surf. Sci. Catal. (Proc. 15th Int. Zeolite Conf., Beijing, 2007), Xu, R., Chen, J., Gao, Zi, and Yan, W., Eds., 2007, vol. 170, p. 1460.

  107. McDonnell, A.M.P., Beving, D., et al., Adv. Funct. Mater., 2005, vol. 15, no. 2, p. 336.

    Article  CAS  Google Scholar 

  108. Beving, D.E., O’Neill, C.R., and Yan, Y., Microporous Mesoporous. Mater., 2008, vol. 108, nos. 1–3, p. 77.

    Article  CAS  Google Scholar 

  109. Yan, Y.S., US Patent 7179547, 2007.

  110. O’Neill, C., Beving, D.E., Chen, W., and Yan, Y.S., AIChe J., 2006, vol. 52, no. 3, p.1157.

    Article  CAS  Google Scholar 

  111. Stein, C., King, T.R., Wilson, W.G., and Robertson, R., Optical Systems Contamination and Degradation, Proc. SPIE, Chen, P.T., McClintock, W.E., and Rottman, G.J., Eds., vol. 3427, p. 56.

  112. Perry, J.L., Trace Contaminant Generation Rates for Spacecraft Contamination Control System Design. NASA Technical Memorandum 108497, National Aeronautics and Space Administration, Alabama: Marshall Space Flight Center, 1995.

    Google Scholar 

  113. Thomson, S.R., Hansen, P.A., et al., Incorporation of Molecular Adsorbers into Future Hubble Space Telescope Instruments, Proc. SPIE, Glassford, P.M., Breault, R.P., and Pompea, S.M., Eds., vol. 2864, p. 44.

  114. Mies, M.J.M., Application of Zeolitic Coatings in Microstructured Reactors, Ph.D. Thesis, Eindhoven University of Technology, 2006.

  115. Hogan, J., Nature, 2006, vol. 442, no. 7101, p. 351.

    Article  CAS  Google Scholar 

  116. Reisch, M., Chem. Eng. News, 2004, vol. 82, no. 35, p. 9.

    Google Scholar 

  117. Rouhi, A.M., Chem. Eng. News, 2004, vol. 82, no. 27, p. 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rebrov.

Additional information

Original Russian Text © E.V. Rebrov, 2009, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebrov, E.V. Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors. Catal. Ind. 1, 322–347 (2009). https://doi.org/10.1134/S2070050409040096

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050409040096

Keywords

Navigation