Catalysis in Industry

, 1:237 | Cite as

Ultrasound application at different stages of preparation of the cracking catalyst

  • L. A. Belaya
  • V. P. Doronin
  • T. P. Sorokina
Domestic Catalysis

Abstract

With the purpose of improving the durability of the industrial cracking catalyst Lyuks, the influence of ultrasonic treatment (UST) on the dispersion, durability, hydrophilia, and phase structure of components of the cracking catalyst and catalytic compositions as a whole were studied for the first time. The composition of an industrially manufactured cracking catalyst consists of montmorillonite, the product of hydrargillite thermoactivation, amorphous silica-alumina, and zeolite Y. Applying the ultrasonic treatment to suspensions of individual components of the catalytic composition results in growing their dispersion, at which point is discovered an increase of hydrophilia of montmorillonite particles, an alteration of velocities of aluminium hydroxide phase changes, and an improvement of the durability of calcinated montmorillonite extrudates from 200 to 300 kg/cm2. The ultrasonic treatment of the suspension of the cracking catalyst composition also leads to growing its dispersion, thereby improving the durability from 80 to 125 kg/cm2 and bulk density of the ready cracking catalyst on retention of the high catalytic activity without modifying its structure and incorporation of an additional peptization stage used traditionally for this purpose.

Keywords

Zeolite Montmorillonite Boehmite Ultrasonic Treatment Gibbsite 

References

  1. 1.
    Minibaev, A.V. Usmanov, R.M., et al.,Khim. Tekhnol. Topl. Masel, 1991, no. 8, p. 9.Google Scholar
  2. 2.
    Moroz, A.A. and Osintsev, S.L., Abstracts of Papers, in Sb. nauch. tr. UNIKhIM (Proceedings of UNIKhIM), Yekaterinburg: UNIKhIM, 1998, issue 65, p. 20.Google Scholar
  3. 3.
    Sul’man, M.G., Usp. Khim., 2000, vol. 69, no. 2, p. 178 [Russ. Chem. Rev. (Engl. Transl.), vol. 69, no 2, p. 165].Google Scholar
  4. 4.
    Mal’tsev, A.N. and Sokolova, I.V., Zhurnal Fizicheskoi Khimii, 1970, vol. 44, p. 1092Google Scholar
  5. 5.
    Komarov, V.S., Repina, N.I., and Karpichnik, E.V., Kolloidn. Zh., 1996, vol. 58, no. 4, p. 484.Google Scholar
  6. 6.
    Tyagi, B., Chudasama, C.D., and Jasra, R.K., Applied Clay Science, 2006, vol. 31, p. 16.CrossRefGoogle Scholar
  7. 7.
    Pacula, A., Bielańska, E., et al., Applied Clay Science, 2006, vol. 32, p. 64.CrossRefGoogle Scholar
  8. 8.
    Kruglitskii, N.I., Fiziko-khimicheskie osnovy reguliro vaniya svoistv dispersii glinistykh mineralov (Physicochemical Bases for Regulating of Dispersion Properties of Clay Minerals), Kiev: Naukova dumka, 1968.Google Scholar
  9. 9.
    Katdare, S.P., Ramaswamy, V., and Ramaswamy, A.V., Microporous and Mesoporous Materials, 2000, vol. 37, no. 3, p. 329.CrossRefGoogle Scholar
  10. 10.
    Ismagilov, Z.R., Shkrabina, R.A, and Koryabkina, N.A., Alyumooksidnye nositeli: proizvodstvo, svoistva i primenenie v kataliticheskikh protsessakh zashchity okruzhayushchei sredy (Alumooxide Supporters: Production, Properties and Application in Catalytic Processes of Environment Protection), Novosibirsk: Izd. SO RAN, 1998.Google Scholar
  11. 11.
    Drozdov, V.A., Ross. Khim. Zh., 2007, vol. 51, no. 4, p. 148.Google Scholar
  12. 12.
    Worrall, W.E., Clays and Ceramic Raw Materials, New York: Halsted Press, 1975.Google Scholar
  13. 13.
    Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Yu.D., Usp. Khim., 2007, vol. 76, no. 2, p. 147 [Russ. Chem. Rev. (Engl. Transl.), vol. 76, no 2, p. 133].Google Scholar
  14. 14.
    Ul’trazvuk. Malen’kaya entsiklopediya (Ultrasound. Little Encyclopedia), Golyamin, I.P., Ed., Moscow: Sov. Entsikl, 1979.Google Scholar
  15. 15.
    Paryichak, T.V., Mal’tsev, A.N., and Kobozev, N.I., Zhurnal fizicheskoi khimii, 1967, vol. 41,no 5, p. 1206.Google Scholar
  16. 16.
    Kharina, I.V., Isupova, L.A., et al., Kinet. Katal., 2007, vol. 48, no. 2, p. 343 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 2, p. 327].CrossRefGoogle Scholar
  17. 17.
    Dzis’ko, V.A., Tarasova, D.V., and Karnaukhov, A.P., Fiziko-Khimicheskie Osnovy Sinteza Okisnykh Kataliza torov (Physicochemical Bases for Synthesis of Oxide Catalysts), Novosibirsk: Nauka, 1978.Google Scholar
  18. 18.
    Kumar, N. Masloboischikova, O.V., et al., Ultrason. Sonochem., 2007, vol. 14, no. 2, p. 122.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. A. Belaya
    • 1
  • V. P. Doronin
    • 1
  • T. P. Sorokina
    • 1
  1. 1.Institute of Problems of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations