Skip to main content
Log in

Ultrasound application at different stages of preparation of the cracking catalyst

  • Domestic Catalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

With the purpose of improving the durability of the industrial cracking catalyst Lyuks, the influence of ultrasonic treatment (UST) on the dispersion, durability, hydrophilia, and phase structure of components of the cracking catalyst and catalytic compositions as a whole were studied for the first time. The composition of an industrially manufactured cracking catalyst consists of montmorillonite, the product of hydrargillite thermoactivation, amorphous silica-alumina, and zeolite Y. Applying the ultrasonic treatment to suspensions of individual components of the catalytic composition results in growing their dispersion, at which point is discovered an increase of hydrophilia of montmorillonite particles, an alteration of velocities of aluminium hydroxide phase changes, and an improvement of the durability of calcinated montmorillonite extrudates from 200 to 300 kg/cm2. The ultrasonic treatment of the suspension of the cracking catalyst composition also leads to growing its dispersion, thereby improving the durability from 80 to 125 kg/cm2 and bulk density of the ready cracking catalyst on retention of the high catalytic activity without modifying its structure and incorporation of an additional peptization stage used traditionally for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minibaev, A.V. Usmanov, R.M., et al.,Khim. Tekhnol. Topl. Masel, 1991, no. 8, p. 9.

  2. Moroz, A.A. and Osintsev, S.L., Abstracts of Papers, in Sb. nauch. tr. UNIKhIM (Proceedings of UNIKhIM), Yekaterinburg: UNIKhIM, 1998, issue 65, p. 20.

    Google Scholar 

  3. Sul’man, M.G., Usp. Khim., 2000, vol. 69, no. 2, p. 178 [Russ. Chem. Rev. (Engl. Transl.), vol. 69, no 2, p. 165].

    Google Scholar 

  4. Mal’tsev, A.N. and Sokolova, I.V., Zhurnal Fizicheskoi Khimii, 1970, vol. 44, p. 1092

    Google Scholar 

  5. Komarov, V.S., Repina, N.I., and Karpichnik, E.V., Kolloidn. Zh., 1996, vol. 58, no. 4, p. 484.

    Google Scholar 

  6. Tyagi, B., Chudasama, C.D., and Jasra, R.K., Applied Clay Science, 2006, vol. 31, p. 16.

    Article  CAS  Google Scholar 

  7. Pacula, A., Bielańska, E., et al., Applied Clay Science, 2006, vol. 32, p. 64.

    Article  CAS  Google Scholar 

  8. Kruglitskii, N.I., Fiziko-khimicheskie osnovy reguliro vaniya svoistv dispersii glinistykh mineralov (Physicochemical Bases for Regulating of Dispersion Properties of Clay Minerals), Kiev: Naukova dumka, 1968.

    Google Scholar 

  9. Katdare, S.P., Ramaswamy, V., and Ramaswamy, A.V., Microporous and Mesoporous Materials, 2000, vol. 37, no. 3, p. 329.

    Article  CAS  Google Scholar 

  10. Ismagilov, Z.R., Shkrabina, R.A, and Koryabkina, N.A., Alyumooksidnye nositeli: proizvodstvo, svoistva i primenenie v kataliticheskikh protsessakh zashchity okruzhayushchei sredy (Alumooxide Supporters: Production, Properties and Application in Catalytic Processes of Environment Protection), Novosibirsk: Izd. SO RAN, 1998.

    Google Scholar 

  11. Drozdov, V.A., Ross. Khim. Zh., 2007, vol. 51, no. 4, p. 148.

    CAS  Google Scholar 

  12. Worrall, W.E., Clays and Ceramic Raw Materials, New York: Halsted Press, 1975.

    Google Scholar 

  13. Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Yu.D., Usp. Khim., 2007, vol. 76, no. 2, p. 147 [Russ. Chem. Rev. (Engl. Transl.), vol. 76, no 2, p. 133].

    Google Scholar 

  14. Ul’trazvuk. Malen’kaya entsiklopediya (Ultrasound. Little Encyclopedia), Golyamin, I.P., Ed., Moscow: Sov. Entsikl, 1979.

    Google Scholar 

  15. Paryichak, T.V., Mal’tsev, A.N., and Kobozev, N.I., Zhurnal fizicheskoi khimii, 1967, vol. 41,no 5, p. 1206.

    Google Scholar 

  16. Kharina, I.V., Isupova, L.A., et al., Kinet. Katal., 2007, vol. 48, no. 2, p. 343 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 2, p. 327].

    Article  Google Scholar 

  17. Dzis’ko, V.A., Tarasova, D.V., and Karnaukhov, A.P., Fiziko-Khimicheskie Osnovy Sinteza Okisnykh Kataliza torov (Physicochemical Bases for Synthesis of Oxide Catalysts), Novosibirsk: Nauka, 1978.

    Google Scholar 

  18. Kumar, N. Masloboischikova, O.V., et al., Ultrason. Sonochem., 2007, vol. 14, no. 2, p. 122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.A. Belaya, V.P. Doronin, T.P. Sorokina, 2009, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belaya, L.A., Doronin, V.P. & Sorokina, T.P. Ultrasound application at different stages of preparation of the cracking catalyst. Catal. Ind. 1, 237–242 (2009). https://doi.org/10.1134/S207005040903012X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005040903012X

Keywords

Navigation