Catalysis in Industry

, Volume 1, Issue 1, pp 29–37 | Cite as

Nanostructured catalytic membrane reactors of the new generation

  • G. F. Tereshchenko
  • A. A. Malygin
  • M. M. Ermilova
  • N. V. Orekhova
  • V. V. Volkov
  • V. I. Lebedeva
  • I. V. Petrova
  • M. V. Tsodikov
  • V. V. Teplyakov
  • L. I. Trusov
  • I. I. Moiseev
Article

Abstract

Studied in this work were the industrially important processes (partial oxidation of methane, oxidation of methanol to formaldehyde, reduction of oxygen in aqueous media, oxidation of CO to CO2) involving the use of nanostructured catalytic membrane reactors of the new generation. The membrane reactors were prepared according to various methods: sol-gel, molecular layering, magnetron sputtering, chemical deposition, etc. Subject to study were also the structure of the catalytic membranes and the kinetics of the reactions occurring in the gaseous and liquid phases. It was demonstrated that the deposition of a nanostructured catalytic layer to nonselective porous membranes could give rise to, or enhance, the selectivity of both their gas permeability and catalytic activity. In the case of the application of hybrid membranes, an “asymmetry effect” was discovered and explained. Some of the membranes studied can be considered as specific nanoreactors.

Keywords

Molecular Layering Composite Membrane Magnetron Sputtering Oxidative Dehydrogenation Membrane Reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, C., Feng, Sh., Ran, S., et al., Communication, Angew. Chem. Int. Ed., 2003, vol. 42, p. 5196.CrossRefGoogle Scholar
  2. 2.
    Balachandran, U., Dusek, J.T., Mieville, R.L. et al., Appl.Catalysis A: General, 1995, vol. 133, p. 19.CrossRefGoogle Scholar
  3. 3.
    Tereshchenko, G.F., Orekhova, N.V., and Ermilova, M.M., Membrany, 2007, vol. 33, p. 4.Google Scholar
  4. 4.
    Vedrine, J.C., Topics in Catalysis, 2000, vol. 11, p. 147.CrossRefGoogle Scholar
  5. 5.
    Lu, Y.L., Dixon, A.G., Moder, W.R., et al., Catalysis Today, 2000, vol. 56, p. 297.CrossRefGoogle Scholar
  6. 6.
    Klose, F., Wolf, T., Thomas, S., and Siegel-Morgenstern, A., Catalysis Today, 2001, vol. 82, p. 25.CrossRefGoogle Scholar
  7. 7.
    Diakov, V. and Varma, A., Chem. Eng. Sci., 2002, vol. 57, p. 1099.CrossRefGoogle Scholar
  8. 8.
    Malygin, A.A., Zh. Prikl. Khim., 1996, vol. 69, p. 1419.Google Scholar
  9. 9.
    Malygin, A.A., Ermilova, M.M., Gryaznov, V.M., et al., Desalination, 2002, vol. 87, p. 144.Google Scholar
  10. 10.
    Pall Schumacher Unwelt and Trenntechnik GmbH, www.schumacher.filters.de
  11. 11.
    Hong, H. and Y-P, Mater. Res. Bull., 1976, vol. 11, p. 173.CrossRefGoogle Scholar
  12. 12.
    Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., et al., Zh. Prikl. Khim., 2006, vol. 79, no. 4, p. 622.Google Scholar
  13. 13.
    Ermilova, M.M., Gryaznov, V.M., Orekhova, N.V., et al., Materialy Vtoroi Vserossiiskoi Konferentsii “Khimiya poverkhnosti i nanotekhnologiya”. (Proc. 2nd All-Union Conf. “Surface Chemistry and Nanotechnology”), St. Petersburg-Khilovo, 2002, p. 38.Google Scholar
  14. 14.
    Julbe, A. et al., J. Membr. Sci., 2001, vol. 181, p. 3.CrossRefGoogle Scholar
  15. 15.
    DeSilva, S.G., EP Patent 0 145 262, 1985.Google Scholar
  16. 16.
    Van der Vaart, R., Elizarova, A.V., Volkov, V.V., Lebedeva, V.I., and Gryaznov, V.M, NL Patent 1 023 364, 2004.Google Scholar
  17. 17.
    Lebedeva, V.I., Gryaznov, V.M., Petrova, I.V., et al., Kinet. Katal., 2006, vol. 47, p. 894 [Kinet. Catal. (Engl. Transl.), vol. 47].CrossRefGoogle Scholar
  18. 18.
    Van der Vaart, R., Lebedeva, V.I., Petrova, I.V., et al., J. Membr. Sci., 2007, vol. 299, p. 38.CrossRefGoogle Scholar
  19. 19.
    MEMBRANA Underlining Performance, www.membrana.com.
  20. 20.
    Petrova, I.V., Lebedeva, V.I., Volkov, V.V. et al., Proc. 8th Int. Conf. On Catalysis in Membrane Reactors, Kolkata, 2007, p. 68.Google Scholar
  21. 21.
    Hwang, S.T., Kammermeyer, K., Membranes in Separations, New York: Wiley, 1975.Google Scholar
  22. 22.
    Vilani, S. and Kikoin, I.K., Obogashchenie Urana (Uranium Enrichment), Moscow: Energoatomizdat, 1983.Google Scholar
  23. 23.
    Kreuer, K.D., Journal of Membrane Science, 2001, vol. 185, p. 29.CrossRefGoogle Scholar
  24. 24.
    Trusov, E.A., Tsodikov, M.V., and Slivinskii, E.V., Neftekhimiya, 1999, vol. 39, no. 4, p. 243 [Pet. Chem. (Engl. Transl.), vol. 39, no. 4, p. 243].Google Scholar
  25. 25.
    Trusov, L.I, US Patent 6364586, 1994.Google Scholar
  26. 26.
    Borovinskaya, I.P., Merzhanov, A.G., and Uvarov, V.I., RF Patent 2175904, 2000.Google Scholar
  27. 27.
    Ernandes, G.F., Development of Catalysts Based on Al2O3 and TiO2 for Transformations of CO, Hydrocarbons, and NOx in the Processes of Puriification of Exhaust Gases, Cand. Sci. (Chem.) Dissertation, Moscow: Institute of Petrochemical Synthesis, Russian Academy of Sciences, 1999.Google Scholar
  28. 28.
    Stull, D.R., Wesrtum, E.F., and Sinke G.C., The Chemical Thermodynamics of Organic Compounds, New York: Wiley, (1969).Google Scholar
  29. 29.
    Tsodikov, M.V., Teplyakov, V.V., and Magsumov, M.I., RF Patent Application 2006129565, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • G. F. Tereshchenko
    • 1
  • A. A. Malygin
    • 1
  • M. M. Ermilova
    • 1
  • N. V. Orekhova
    • 1
  • V. V. Volkov
    • 1
  • V. I. Lebedeva
    • 1
  • I. V. Petrova
    • 1
  • M. V. Tsodikov
    • 1
  • V. V. Teplyakov
    • 1
  • L. I. Trusov
    • 1
  • I. I. Moiseev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations