Skip to main content
Log in

An Adaptive Chebyshev Iterative Method

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

An adaptive Chebyshev iterative method used to solve boundary-value problems for three-dimensional elliptic equations numerically is constructed. In this adaptive method, the unknown lower bound of the spectrum of the discrete operator is refined in the additional iteration cycle, and the upper bound of the spectrum is taken to be its estimate by the Gershgorin theorem. Such a procedure ensures the convergence of the constructed adaptive method with the computational costs close to the costs of the standard Chebyshev method, which uses the exact bounds of the spectrum of the discrete operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “Multigrid method for anisotropic diffusion equations based on adaptive Chebyshev smoothers,” Math. Models Comput. Simul. 7, 117–127 (2015).

    Article  MathSciNet  Google Scholar 

  2. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “Multigrid method for elliptic equations with anisotropic discontinuous coefficients,” Comput. Math. Math. Phys. 55, 1150–1163 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “On the solution of evolution equations based on multigrid and explicit iterative methods,” Comput. Math. Math. Phys. 55, 1276–1289 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. T. Zhukov, M. M. Krasnov, N. D. Novikova, and O. B. Feodoritova, “Algebraic multigrid method with adaptive smoothers based on Chebyshev polynomials,” KIAM Preprint No. 113 (Keldysh Inst. Appl. Math., Moscow, 2016). http://library.keldysh.ru/preprint.aspıd=2016-113. https://doi.org/10.20948/prepr-2016-113

  5. A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev, M. Schulz, and U. M. Yang, “Scaling algebraic multigrid solvers: on the road to exascale,” in Competence in High Performance Computing (Springer, Berlin, Heidelberg, 2010), pp. 215–226.

    Google Scholar 

  6. A. Baker, R. Falgout, T. Kolev, and U. Yang, “Multigrid smoothers for ultra-parallel computing,” SIAM J. Sci. Comput. 33, 2864–2887 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. R. Gantmacher, The Theory of Matrices (AMS, Chelsea, 2000; Nauka, Moscow, 1966).

  8. A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations, Vol. 1: Direct Methods, Vol. 2: Iterative Methods (Birkhauser, Basel, Boston, Berlin, 1989; Nauka, Moscow, 1978).

  9. P. L. Chebyshev, “Questions about the smallest values associated with the approximate representation of functions,” in Writings (Sand Pb., 1899), Vol. 1, pp. 705–710 [in Russian].

    Google Scholar 

  10. A. S. Shvedov and V. T. Zhukov, “Explicit iterative difference schemes for parabolic equations,” Russ. J. Numer. Anal. Math. Model. 13, 133–148 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam,” R. Soc. Philos. Trans. A 210, 307–357 (1910).

    Article  MATH  Google Scholar 

  12. M. K. Gavurin, “Application of best approximation polynomials to improving convergence of iterative processes,” Usp. Mat. Nauk 5, 156–160 (1950).

    Google Scholar 

  13. D. Flanders and G. Shortley, “Numerical determination of fundamental modes,” Appl. Phys. 21, 1326–1332 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. H. Shortley, “Use of Tschebyscheff-polynomial operators in the solution of boundary value problems,” J. Appl. Phys. 24, 392-396 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. M. Young, “On Richardson’s method for solving linear systems with positive definite matrices,” Math. Phys. 32, 243–255 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. I. Lebedev and S. A. Finogenov, “On the order of selection of iterative parameters in the Chebyshev cyclic method,” Zh. Vychisl. Mat. Mat. Fiz. 11, 425–438 (1971).

    MATH  Google Scholar 

  17. E. S. Nikolaev and À. À. Samarskii, “Selection of iterative parameters in the Richardson method,” Zh. Vychisl. Mat. Mat. Fiz. 12, 960–973 (1972).

    MATH  Google Scholar 

  18. Yuan Čžao-din, “Some difference schemes for solving the first boundary value problem for linear partial differential equations,” Cand. Sci. (Phys. Math.) Dissertation (Mosc. State Univ., Moscow, 1958).

  19. Yuan Čžao-din, “Some difference schemes for the numerical solution of a parabolic differential equation,” Mat. Sb. 50, 391–422 (1960).

    MathSciNet  Google Scholar 

  20. Yuan Čžao-din, “On the stability of difference schemes for solving differential equations of parabolic type,” Dokl. Akad. Nauk SSSR 117, 578–581 (1957).

    MathSciNet  Google Scholar 

  21. V. K. Saul’ev, Integration of Parabolic Equations by the Grid Method, Ed. by L. A. Lyusternik (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  22. L. A. Lyusternik, “Remarks on the numerical solution of boundary problems of the Laplace equation and the calculation of eigenvalues by the grid method,” Tr. Mat. Inst. Steklova 20, 49-64 (1947).

    MathSciNet  Google Scholar 

  23. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobelkov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  24. J. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, 1997).

    Book  MATH  Google Scholar 

  25. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klofkorn, and G. Manzini, “3D benchmark on discretization schemes for anisotropic diffusion problems on general grids,” HAL Id: hal-00580549 (2011). https://hal.archives-ouvertes.fr/hal-0058054.

  26. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, An Adative Cebysev Method (Ross. Akad. Nauk, Moscow, 2017) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by a grant of the Russian Science Foundation (project no. 14-21-00025-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. T. Zhukov, N. D. Novikova or O. B. Feodoritova.

Additional information

Translated by M. Talacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.T., Novikova, N.D. & Feodoritova, O.B. An Adaptive Chebyshev Iterative Method. Math Models Comput Simul 11, 426–437 (2019). https://doi.org/10.1134/S2070048219030165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219030165

Keywords:

Navigation