Skip to main content
Log in

Rayleigh-Taylor Instability Development in the Equatorial Ionosphere and a Geometry of an Initial Irregularity

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

In this paper, we performed a numerical simulation for the conditions of the equatorial F‑region of the Earth’s ionosphere using the two-dimensional electrodynamically consistent mathematical MI2 model. The development time of ionospheric bubbles is shown to depend sufficiently strongly on the vertical scale and less strongly on the horizontal scale of the initial irregularity. Ionospheric bubbles developed more slowly at the generation of instability by increasing the plasma concentration than by depleting a plasma. On increasing the initial irregularity scale, three metric thresholds are experimentally found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. L. Ossakow, S. T. Zalesak, B. E. McDonald, and P. K. Chaturvedi, “Nonlinear equatorial spread-F: Dependence of altitude of the F-peak and bottomside background electron density gradient scale length,” J. Geophys. Res. A 84, 17–39 (1979).

    Article  Google Scholar 

  2. C. R. Martinis, M. J. Mendillo, and J. Aarons, “Toward a synthesis of equatorial spread-F onset and suppression during geomagnetic storms,” J. Geophys. Res. A 110, A07306 (2005). https://doi.org/10.1029/2003JA0101362

    Google Scholar 

  3. H. Kil, R. A. Heelis, L. J. Paxton., and S. J. Oh, “Formation of a plasma depletion shell in the equatorial ionosphere,” J. Geophys. Res. A 114, A11302 (2009).

  4. D. L. Hysell, E. Kudeki, and J. L. Chau, “Possible ionospheric preconditioning by shear low leading to equatorial spread F,” Ann. Geophys. 23, 2647–2655 (2005).

    Article  Google Scholar 

  5. S. T. Zalesak, S. L. Ossakow, and P. K. Chaturvedi, “Nonlinear equatorial spread-F: the effect of neutral winds and background Pedersen conductivity,” J. Geophys. Res. 87, 151–166 (1982).

    Article  Google Scholar 

  6. B. N. Gershman, Dynamics of Ionospheric Plasma (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  7. S. Matsievsky, N. Kashchenko, S. Ishanov, and L. Zinin, “3D modeling of equatorial F-scattering: comparison of MI3 and SAMI3 models,” Vestn. Balt. Univ. Kanta, No.4, 102–105 (2013).

    Google Scholar 

  8. N. M. Kashchenko and S. V. Matsievsky, “Mathematical modeling of instabilities of the equatorial F-layer of the ionosphere,” Vestn. Kaliningr. Univ., Ser. Inform. Telekommun., No. 3, 59–68 (2003).

  9. M. N. Fatkullin and Yu. S. Sitnov, “Dipolar coordinate system and its some features,” Geomagn. Aeron. 12, 333–335 (1972).

    Google Scholar 

  10. A. E. Hedin, J. E. Salah, J. V. Evans, et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature,” J. Geophys. Res. A 82, 2139-2147 (1977).

    Article  Google Scholar 

  11. A. E. Hedin, C. A. Reber, G. P. Newton, et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition,” J. Geophys. Res. A 82, 2148–2156 (1977).

    Article  Google Scholar 

  12. Guide to Reference and Standard Ionosphere Models (Am. Inst. Aeronaut. Astronaut., 2011).

  13. J. D. Huba, G. Joyce, and J. Krall, “Three-dimensional modeling of equatorial spread F,” in Aeronomy of the Earth’s Atmosphere and Ionosphere, IAGA Special Sopron Book Series (Springer, 2011), Vol. 2, pp. 211–218.

    Google Scholar 

  14. V. V. Medvedev, S. A. Ishanov, and V. I. Zenkin, “Self-consistent model of the lower ionosphere,” Geomagn. Aeron. 42, 745–754 (2002).

    Google Scholar 

  15. V. V. Medvedev, S. A. Ishanov, and V. I. Zenkin, “Effect of vibrationally excited nitrogen on recombination in ionospheric plasma,” Geomagn. Aeron. 43, 231–238 (2003).

    Google Scholar 

  16. S. A. Ishanov, L. V. Zinin, S. V. Klevtsur, S. V. Matsievsky, and V. I. Saveliev, “Simulation of longitudinal variations of Earth ionosphere parameters,” Mat. Model. 28 (3), 64–78 (2016).

    MathSciNet  MATH  Google Scholar 

  17. D. N. Anderson and P.A Berhardt, “Modelling the effects of an H-gas release on the equatorial ionosphere,” J. Geophys. Res. 83, 4777–4790 (1978).

    Article  Google Scholar 

  18. P. A. Bernhardt, “Three-dimensional, time-dependent modeling of neutral gas diffusion in a nonuniform, chemically reactive atmosphere,” J. Geophys. Res. 84, 793–802 (1979).

    Article  Google Scholar 

  19. M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, and V. S. Chevanin, “A version of essentially nonoscillatory high_order accurate difference schemes for systems of conservation laws,” Math. Models Comput. Simul. 2, 304–316 (2010).

    Article  MathSciNet  Google Scholar 

  20. A. V. Safronov, “Accuracy estimation and comparative analysis of difference schemes of high-order approximation,” Vychisl. Metody Programmir. 11, 137–143 (2010).

    Google Scholar 

  21. B. van Leer, “Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes,” Commun. Comp. Phys. 6, 192–206 (2006).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 17-01-00265.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Kashchenko, S. A. Ishanov or S. V. Matsievsky.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashchenko, N.M., Ishanov, S.A. & Matsievsky, S.V. Rayleigh-Taylor Instability Development in the Equatorial Ionosphere and a Geometry of an Initial Irregularity. Math Models Comput Simul 11, 341–348 (2019). https://doi.org/10.1134/S2070048219030116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219030116

Keywords:

Navigation