Skip to main content
Log in

On Resolving Inverse Nonstationary Scattering Problems in a Two-Dimensional Homogeneous Layered Medium by the τ–p Radon Transform

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

We consider a two-dimensional nonstationary inverse scattering problem in a layered homogeneous acoustic medium. The data consist of a scattered wavefield from a surface point source registered on the boundary of the half-plane. We prove the uniqueness of the recovery of an acoustic impedance and velocity in a medium from the scattering data. An algorithm for solving an inverse twodimensional scattering problem as a one-dimensional problem with the parameter based on the τ–p Radon transformation is constructed. Also, the numerical modeling results for the direct scattering problem and solutions of a pair of inverse scattering problems in a layered homogeneous acoustic medium are presented. The proposed algorithm is applicable to data processing in geophysical prospecting both for surface seismics and vertical seismic profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tikhonov, “On uniqueness of solution of the electroprospecting problem,” Dokl. Akad. Nauk SSSR 69, 797–800 (1949).

    Google Scholar 

  2. A. N. Tikhonov, “Mathematical basis of the theory of electromagnetic soundings, USSR Comput. Math. Math. Phys. 5, 207–211 (1965).

    Article  Google Scholar 

  3. A. N. Kolmogorov, “Sur l’interpolation et l’extrapolation des suites stationnaires,” C. R. Acad. Sci. Paris 208, 2043–2045 (1939).

    MATH  Google Scholar 

  4. J. F. Claerbout and A. G. Jonson, “Extrapolation of time dependent waveforms along their path of propagation,” Geophys. J. R. Astron. Soc. 26, 285–295 (1971).

    Article  Google Scholar 

  5. P. S. Schultz, “Velocity estimation and downward continuation by wave front synthesis,” Geophysics 43, 691–714 (1978).

    Article  Google Scholar 

  6. J. F. Claerbout, Fundamentals of Geophysical Data Processing (McGraw-Hill, New York, 1976).

    Google Scholar 

  7. G. A. McMechan, “Migration by extrapolation of time-dependent boundary value,” Geophys. Prosp. 31, 413–420 (1983).

    Article  Google Scholar 

  8. V. G. Romanov, “Determining the parameters of a stratified piecewise constant medium for the unknown shape of an impulse source,” Sib. Math. J. 48, 1074–1084 (2007).

    Article  Google Scholar 

  9. V. G. Romanov, “On the problem of determining the parameters of a layered elastic medium and an impulse source,” Sib. Math. J. 49, 919–943 (2008).

    Article  MathSciNet  Google Scholar 

  10. V. G. Romanov, Inverse Problems of Mathematical Physics (VSP, Netherlands, 1984; Nauka, Moscow, 1984).

    MATH  Google Scholar 

  11. M. M. Lavrent’ev, K. G. Reznitskaya, and V. G. Yakhno, One-Dimensional Inverse Problems of Mathematical Physics (Nauka, Novosibirsk, 1982; Am. Math. Soc, Providence, RI, 1986).

    Book  MATH  Google Scholar 

  12. E. N. Bessonova, V. M. Fishman, V. Z. Ryaboy, and G. A. Sitnikova, “The tau method for inversion of travel times.1. Deep seismic sounding data,,” Geophys. J. R. Astron. Soc. 36, 377–398 (1974).

    Article  Google Scholar 

  13. C. H. Chapman, “A new method for computing synthetic seismograms,” Geophys. J. R. Astron. Soc. 54, 481–518 (1978).

    Article  MATH  Google Scholar 

  14. C. H. Chapman, “Generalized radon transform and slant stacks,” Geophys. J. R. Astron. Soc. 66, 445–453 (1981).

    Article  MATH  Google Scholar 

  15. R. W. Clayton and G. A. McMechan, “Inversion of refraction data by wavefield continuation,” Geophysics 46, 860–868 (1981).

    Article  Google Scholar 

  16. T. M. Brocher and R. A. Phinney, “Inversion of slant stacks using finite-length record sections,” J. Geophys. Res. 86, 7065–7072 (1981).

    Article  Google Scholar 

  17. G. A. McMechan, “p-x imaging by localized slant stacks of T-x data,,” Geophys. J. R. Astron. Soc. 72, 213–221 (1983).

    Article  Google Scholar 

  18. B. Milkereit, W. D. Mooney, and W. M. Kohler, “Inversion of seismic refraction data in planar dipping structure,” Geophys. J. Int. 82, 81–103 (1985).

    Article  Google Scholar 

  19. M. E. Kupps, A. J. Harding, and J. A. Orcutt, “A comparison of tau-p transform methods,” Geophysics 55, 1202–1215 (1990).

    Article  Google Scholar 

  20. B. Zhou and S. A. Greenhalgh, “Linear and parabolic τ-p transforms revisited,” Geophysics 59, 1133–1149 (1994).

    Article  Google Scholar 

  21. A. V. Baev, “On t-local solvability of inverse scattering problems in two dimensional layered media,” Comput. Math. Math. Phys. 55, 1033–1050 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. V. Baev, “Imaging of layered media in inverse scattering problems for an acoustic wave equation,” Math. Models Comput. Simul. 8, 689–702 (2016).

    Article  MathSciNet  Google Scholar 

  23. A. S. Alekseev and A. G. Megrabov, “Direct and inverse problems of scattering of plane waves in heterogeneous layers,” Mat. Probl. Geofiz., No. 3, 8–36 (1972).

    Google Scholar 

  24. A. G. Megrabov, “A method for recovering density and velocity in an inhomogeneous layer as a function of depth from a family of plane waves reflected from a layer at different angles,” Mat. Probl. Geofiz., No. 5, 78–107 (1974).

    Google Scholar 

  25. W. Nowacki, Teoria Sprezystosci (PWN, Warsawa, 1970).

    MATH  Google Scholar 

  26. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, New York, 2013; Nauka, Moscow, 1972).

    MATH  Google Scholar 

  27. A. V. Baev and N. V. Kutsenko, “Solving the inverse generalized problem of vertical seismic profiling,” Comput. Math. Model. 15, 1–18 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. V. Baev and N. V. Kutsenko, “Identification of a dissipation coefficient by a variational method,” Comput. Math. Math. Phys. 46, 1796–1807 (2006).

    Article  MathSciNet  Google Scholar 

  29. A. S. Blagoveshchenskii, “The local method of solution of the nonstationary inverse problem for an inhomogeneous string,” Tr. MIAN im. V. A. Steklova 115, 28–38 (1971).

    Google Scholar 

  30. A. V. Baev, “A method of solving the inverse scattering problem for the wave equation,” Comput. Math. Math. Phys. 28 (1), 15–21 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. V. Baev, “On the solution of the inverse problem of scattering of a plane wave by a layered-inhomogeneous mediumi,” Sov. Phys. Dokl. 32, 26–28 (1988).

    Google Scholar 

  32. A. V. Baev, “On the solution of the inverse boundary value problem for the wave equation with a discontinuous coefficient,” Comput. Math. Math. Phys. 28 (6), 11–21 (1988).

    Article  MathSciNet  Google Scholar 

  33. A. V. Baev, “On local solvability of inverse scattering problems for the Klein-Gordon equation and the Dirac system,” Math. Notes 96, 286–289 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. V. Baev, “Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media,” Comput. Math. Math. Phys. 56 (12), 15–21 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. N. Tikhonov, “Solution of incorrectly formulated problems and regularization methods,” Sov. Math. Dokl. 4, 1035–1038 (1963).

    MATH  Google Scholar 

  36. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  37. A. A. Kaufman, A. L. Levshin, and K. L. Larner, Acoustic and Elastic Wave Fields in Geophysics II (Elsevier, New York, 2002; Nedra, Moscow, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Baev.

Additional information

Original Russian Text © A.V. Baev, 2018, published in Matematicheskoe Modelirovanie, 2018, Vol. 30, No. 3, pp. 101–117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baev, A.V. On Resolving Inverse Nonstationary Scattering Problems in a Two-Dimensional Homogeneous Layered Medium by the τ–p Radon Transform. Math Models Comput Simul 10, 659–669 (2018). https://doi.org/10.1134/S2070048218050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048218050022

Keywords

Navigation